1374
M. Kanematsu et al. / Tetrahedron Letters 52 (2011) 1372–1374
H
H
for the Promotion of Basic and Applied Research for Innovations
in the Bio-oriented Industry (BRAIN).
H
H
HO
O
O
H
H
O
HO
O
b
a
c, d
References and notes
20
TBDPSO
TBDPSO
H
1. Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. Org. Lett.
2008, 10, 225–228.
22
23
2. Ookura, R.; Kito, K.; Saito, Y.; Kusumi, T.; Ooi, T. Chem. Lett. 2009, 38, 384.
3. (a) Nagasawa, T.; Kuwahara, S. Tetrahedron Lett. 2010, 51, 875–877; (b) Díaz-
Oltra, S.; Angulo-Pachón, C. A.; Murga, J.; Carda, M.; Marco, J. A. J. Org. Chem.
2010, 75, 1775–1778. Díaz-Olta, S.; Angulo-Pachón, C. A.; Murga, J.; Falomir, E.;
Carda, M.; Marco, J. A. Chem. Eur. J., 2011, 17, 675–688; (c) Fuwa, H.;
Yamaguchi, H.; Sasaki, M. Org. Lett. 2010, 12, 1848–1851. Fuwa, H.;
Yamaguchi, H.; Sasaki, M. Tetrahedron 2010, 66, 7492–7503; (d) Sabitha, G.;
Reddy, D. V.; Rao, A. S.; Yadav, J. S. Tetrahedron Lett. 2010, 51, 4195–4198.
4. (a) Hande, S. M.; Uenishi, J. Tetrahedron Lett. 2009, 50, 189–192; (b) Díaz-Oltra,
S.; Angulo-Pachón, C. A.; Kneeteman, M. N.; Murga, J.; Carda, M.; Marco, J. A.
Tetrahedron Lett. 2009, 50, 3783–3785; (c) Nagasawa, T.; Kuwahara, S. Biosci.,
Biotechnol., Biochem. 2009, 73, 1893–1894; (d) Liu, J.; Xu, K.; He, J.; Zhang, L.;
Pan, X.; She, X. J. Org. Chem. 2009, 74, 5063–5066; (e) Mueller, A. J.; Jennings, M.
P. Tetrahedron Lett. 2010, 51, 4260–4262.
H
MOMO
R1O2C
MOMO
H
H
g
O
h
O
H
H
O
(+)-1
O
R2O
27
24: R1=MOM, R2=TBDPS
25: R1=MOM, R2=H
26: R1=R2=H
e
f
Scheme 5. Synthesis of (+)-1. Reagents and conditions: (a) 3 M HCl, THF, rt, 2 h,
90%; (b) TEMPO (10 mol %), PhI(OAc)2, CH2Cl2, rt, 1.5 h, 93%; (c) LiOHꢁH2O, THF/H2O
(1:1), rt, 3 h; (d) MOMCl, iPr2NEt, CH2Cl2, 0 °C, 2 h, 90% (2 steps); (e) HFꢁpyridine,
THF/pyridine (1:1), 0 °C, 8 h, 90%; (f) LiOHꢁH2O, THF/H2O (1:1), rt, 3 h; (g) 2,4,6-
trichlorobenzoyl chloride, Et3N, THF, rt, 2 h then 4-DMAP, toluene, 80 °C, 5 h (76%,
2 steps); (h) 6 M HCl, THF, rt, 3 h, 49%.
5. (a) Nagasawa, T.; Kuwahara, S. Org. Lett. 2009, 11, 761–764; (b) Panarese, J. D.;
Waters, S. P. Org. Lett. 2009, 11, 5086–5088.
6. (a) Yoshimura, T.; Yakushiji, F.; Kondo, S.; Wu, X.; Shindo, M.; Shishido, K. Org.
Lett. 2006, 8, 475–478; (b) Harvey, J. E.; Raw, S. A.; Taylor, R. J. K. Org. Lett. 2006,
8, 2611–2614; (c) Yakushiji, F.; Maddaluno, J.; Yoshida, M.; Shishido, K.
Tetrahedron Lett. 2008, 50, 1504–1506.
7. (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953–956; (b)
Trnka, T. M.; Morgan, J. P.; Sanford, M. S.; Wilhelm, T. E.; Scholl, M.; Choi, T.-L.;
Ding, S.; Day, M. W.; Grubbs, R. H. J. Am. Chem. Soc. 2003, 125, 2546–2558.
8. Pospisil, J.; Marko, I. E. Tetrahedron Lett. 2006, 48, 5933–5937.
9. (a) Takano, S.; Shimazaki, Y.; Sekiguchi, Y.; Ogasawara, K. Synthesis 1989, 539–
541; (b) Takano, S.; Shimazaki, Y.; Moriya, M.; Ogasawara, K. Chem. Lett. 1990,
19, 1177–1180.
10. The lower diastereoselectivity would be attributed to the epimerization at C3,
via a retro-Michael process, and the lower yield is undoubtedly due to the
lability of the epoxide in the product under strong basic conditions.
11. In the reactions using NaOH and KOH, the hydrolysis of the ester moiety seems
to be somewhat faster than in the case of LiOH, therefore the yields are slightly
lower.
MeOH)}, the spectroscopic properties of which matched those re-
ported for the natural product (Scheme 5).
In summary, we have completed an enantioselective total syn-
thesis of (+)-aspergillide C (1) using an efficient and highly diaste-
reoselective IMOM reaction of the substrate with a cis-epoxide and
an E-enoate as the key step. It was found that addition of water is
important in promoting the IMOM reaction and providing higher
yield and diastereoselectivity. In addition, we demonstrated that
a cis-epoxide on the pyran ring can play a key role in assembling
the hydroxy dihydropyran moiety of the natural product. Our syn-
thetic studies described here may contribute to the synthesis of
other related natural products.
12. Van Arman, S. A. Tetrahedron Lett. 2009, 50, 4693–4695.
13. Liu, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2001, 123, 10772–10773.
14. (a) Crandall, J. K.; Lin, L.-H. C. J. Org. Chem. 1968, 33, 2375–2378; (b) Rickborn,
B.; Thummel, R. P. J. Org. Chem. 1969, 34, 3583–3586; (c) Thummel, R. P.;
Rickborn, B. J. Am. Chem. Soc. 1970, 92, 2064–2067; (d) Crandall, J. K.; Apparu,
M. Org. React. 1983, 29, 345–443.
15. Arata, A.; Yamamoto, H.; Nozaki, H. Bull. Chem. Soc. Jpn. 1979, 52, 1705–1708.
16. Terao, S.; Shiraishi, M.; Kato, K. Synthesis 1979, 467–468.
Acknowledgments
17. (a) Murata, S.; Suzuki, M.; Noyori, R. J. Am. Chem. Soc. 1979, 101, 2738–2739;
(b) Murata, S.; Suzuki, M.; Noyori, R. Bull. Chem. Soc. Jpn. 1982, 55, 247–254; (c)
Nantz, M. H.; Fuchs, P. L. J. Org. Chem. 1987, 52, 5298–5299.
We thank SANYO FINE Co. Ltd for providing R-(ꢀ)-benzyl glyc-
idyl ether. This work was supported financially by a Grant-in-Aid