Organometallics
COMMUNICATION
Scheme 8. Carbopalladation of Dithiane 27
(4) (a) B€ackvall, J. E.; Hopkins, R. B.; Grennberg, H.; Mader, M. M.;
Awasthi, A. K. J. Am. Chem. Soc. 1990, 112, 5160–5166. (b) Heumann,
A.; Åkermark, B. Angew. Chem., Int. Ed. 1984, 23, 453–454.(c) Popp,
B. V.; Stahl, S. S. Topics in Organometallic Chemistry; Springer-Verlag:
Berlin, Heidelberg, 2006.
(5) Åkermark, B.; Hansson, S.; Rein, T.; Vagberg, J.; Heumann, A.;
B€ackvall, J. E. J. Organomet. Chem. 1989, 369, 433–444.
(6) (a) Grennberg, H.; B€ackvall, J. E. Chem. Eur. J. 1998,
4, 1083–1089. (b) Grennberg, H.; Simon, V.; B€ackvall, J. E. Chem.
Commun. 1994, 265–266. (c) Jabre-Truffert, S.; Delmas, A. M.;
Grennberg, H.; Åkermark, B.; Waegell, B. Eur. J. Org. Chem.
2000, 219–224. (d) Kozitsyna, N. Y.; Bukharkina, A. A.; Martens,
M. V.; Vargaftik, M. N.; Moiseev, I. I. J. Organomet. Chem. 2001,
636, 69–75. (e) Lin, B. L.; Labinger, J. A.; Bercaw, J. E. Can. J. Chem.
2009, 87, 264–271. (f) Yang, H.; Khan, M. A.; Nicholas, K. M. J. Mol.
Catal. 1994, 91, 319–334. (g) Zanoni, G.; Porta, A.; Meriggi, A.;
Franzini, M.; Vidari, G. J. Org. Chem. 2002, 67, 6064–6069. (h) Camp-
bell, A. N.; White, P. B.; Guzei, I. A.; Stahl, S. S. J. Am. Chem. Soc. 2010,
132, 15116–15119.
(7) (a) Chen, M. S.; Prabagaran, N.; Labenz, N. A.; White, M. C.
J. Am. Chem. Soc. 2005, 127, 6970–6971. (b) Chen, M. S.; White, M. C.
J. Am. Chem. Soc. 2004, 126, 1346–1347.
(8) Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Org.
Lett. 2010, 12, 824–827.
with oxone18 proceeded smoothly, with concomitant deprotec-
tion of the dithiane, to give a mixture of the alkene 35, the alcohol
36, and the chloride 3719 in 82% overall yield.
In summary, we have demonstrated that two divergent reac-
tion mechanisms operate during the Pd-mediated oxidation of
unsaturated thioacetals, leading to allyl and vinyl acetates. The
reaction intermediates can be characterized via NMR due to the
useful stabilizing effect of the thioacetal group, and the two
reaction mechanisms operate under both catalytic and stoichio-
metric conditions. We were also able to prepare a series of highly
unusual Pd σ-complexes containing β-hydrogen atoms, which
could be charactized via NMR studies and, in one case, single-
crystal X-ray diffraction. We anticipate that thioacetals can be
used to control many other transition-metal-catalyzed reactions
and to facilitate the direct observation of a variety of reaction
intermediates. Further work is underway to extend the scope of
these sulfur-directed organometallic reactions, and the results
will be reported in due course.
(9) Kitching, W.; Rappopor., Z; Winstein, S.; Young, W. G. J. Am.
Chem. Soc. 1966, 88, 2054–2055.
(10) (a) Kalyani, D.; Sanford, M. S. J. Am. Chem. Soc. 2008,
130, 2150–2151. (b) Kalyani, D.; Satterfield, A. D.; Sanford, M. S.
J. Am. Chem. Soc. 2010, 132, 8419–8427. (c) Urkalan, K. B.; Sigman,
M. S. Angew. Chem., Int. Ed. 2009, 48, 3146–3149. (d) Werner, E. W.;
Urkalan, K. B.; Sigman, M. S. Org. Lett. 2010, 12, 2848–2851.
(11) (a) Hansson, S.; Heumann, A.; Rein, T.; Åkermark, B. J. Org.
Chem. 1990, 55, 975–984. (b) Jia, C. G.; Muller, P.; Mimoun, H. J. Mol.
Catal. A: Chem. 1995, 101, 127–136.
(12) For the Pd-mediated isomerization of an unsaturated
thioether, see: McCrindle, R.; Alyea, E. C.; Ferguson, G.; Dias, S. A.;
McAlees, A. J.; Parvez, M. J. Chem. Soc., Dalton Trans. 1980, 137–144.
(13) For full details of the calculations, see the Supporting
Information.
(14) The vinyl acetate products undergo further oxidation in the
presence of excess Pd (see Scheme 6), in some cases to a complex
mixture of products.
(15) (a) Kozitsyna, N. Y.; Vargaftik, M. N.; Moiseev, I. I. J. Organomet.
Chem. 2000, 593, 274–291. (b) Larock, R. C.; Hightower, T. R. J. Org. Chem.
1993, 58, 5298–5300. (c) Minami, T.; Nishimoto, A.; Nakamura, Y.;
Hanaoka, M. Chem. Pharm. Bull. 1994, 42, 1700–1702. (d) Tanaka, M.;
Urata, H.; Fuchikami, T. Tetrahedron Lett. 1986, 27, 3165–3168.
(16) An analogous Pd σ complex appeared to form from the
corresponding alkyl dithiane (27, Me in place of Ph), but the NMR
spectrum was less clean.
’ ASSOCIATED CONTENT
S
Supporting Information. Full experimental procedures
b
and details of the NMR shift calculations for complexes 4-6,
spectroscopic data for all new compounds, and X-ray crystal-
lographic data for complex 32 (CIF file). This material is
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tom.sheppard@ucl.ac.uk.
(17) For a recent example of a stable Pd σ complex containing β-
hydrogen atoms, see: Kirchhoff, J. H.; Netherton, M. R.; Hills, I. D.; Fu,
G. C. J. Am. Chem. Soc. 2002, 124, 13662–13663.
(18) (a) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett. 2006,
8, 1141–1144. (b) Dick, A. R.; Sanford, M. S. Tetrahedron 2006,
62, 2439–2463. (c) Powers, D. C.; Geibel, M. A. L.; Klein, J.; Ritter,
T. J. Am. Chem. Soc. 2009, 131, 17050–17051.
(19) (a) Carr, K.; Sutherland, J. K. J. Chem. Soc., Chem. Commun.
1984, 1227–1228. (b) Ramos, S. S.; Almeida, P.; Santos, L.; Motherwell,
W. B.; Sheppard, T. D.; Costa, M. C. Tetrahedron 2007, 63, 12608–
12615.
’ ACKNOWLEDGMENT
This work was supported by the EPSRC (EP/E052789/1:
Advanced Research Fellowship to T.D.S.) and University Col-
lege London (studentship to S.E.M.). We thank the EPSRC
national crystallography service at Southampton and the EPSRC
national mass spectroscopy service at Swansea for analytical
support and Dr. Stephen Goldup (QMUL) for helpful discussions.
’ REFERENCES
(1) (a) Muzart, J. Tetrahedron 2007, 63, 7505–7521. (b) Anderson,
B. J.; Keith, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2010, 132, 11872–
11874. (c) Keith, J. A.; Henry, P. M. Angew. Chem., Int. Ed. 2009,
48, 9038–9049.
(2) For Wacker oxidation of unsaturated thioethers, see: Raghavan,
S.; Krishnaiah, V.; Rathore, K. Tetrahedron Lett. 2008, 49, 4999–5002.
(3) Ito, Y.; Hirao, T.; Saegusa, T. J. Org. Chem. 1978, 43, 1011–1013.
1775
dx.doi.org/10.1021/om2000585 |Organometallics 2011, 30, 1772–1775