N. Mahajan et al. / Tetrahedron Letters 52 (2011) 1265–1268
1267
R2
9. Goldman, S.; Stoltefuss, J. Angew. Chem., Int. Ed. 1991, 30, 1559.
R2
O
R2
NC
N
N
N
(i) HCl - MeOH
10. Jiang, J. L.; Li, A. H.; Jang, S. Y.; Chang, L.; Melman, N.; Moro, S.; Ji, X. D.;
Lobkowsky, E.; Clardy, J.; Jacobson, K. J. Med. Chem. 1999, 42, 3055.
11. Love, B.; Goodman, M.; Snader, K.; Tedeschi, R.; Macko, E. J. Med. Chem. 1974,
17, 956–965.
(ii) NH4 OH, pH 7.1
+
HO
OH
OH
BF .Et O/ MeOH
CN
or
3
2
NC
NH2
NH2
O
NH2
O
12. Bossert, F.; Meyer, H.; Wehinger, E. Angew. Chem., Int. Ed. 1981, 20, 762–769.
13. Charman, H. B.; Rowe, J. M. Chem. Commun. 1971, 476–477.
3i-3j
4i-4j
5i-5j
14. Scriba, G. K. E.; Borchardt, R. T. Brain Res. 1989, 501, 175–178.
15. Fuks, R.; Merenyi, R.; Viehe, H. Bull. Soc. Chim. Belg. 1976, 85, 147.
16. (a) Cavill, G. W. K.; Ford, D. L.; Solomon, D. H. Aust. J. Chem. 1960, 13, 469; (b)
Sakurai, A.; Midorikevich, E. I. Zh. Obshch. Biol. 1960, 30, 3287.
17. (a) Meyers, A. I.; Ritter, J. J. J. Org. Chem. 1958, 23, 1918; (b) Meyers, A. I.;
Schneller, J.; Ralhan, N. K. J. Org. Chem. 1963, 28, 2944; (c) Meyers, A. I.; Betrus,
B. J.; Ralhan, N. K. J. Heterocycl. Chem. 1964, 1, 13.
18. Abramovitch, R. A., Ed.Pyridine and its Derivatives, Supplement Part One; John
Wiley and Sons: New York, 1974.
19. Yu, L. B.; Chen, D.; Li, J.; Ramirez, J.; Wang, P. G. J. Org. Chem. 1997, 62,
208–211.
Scheme 4. Hydrolysis of 3i and 3j.
Table 3
Yield of reduced products 6a–6j
Compd Reaction time (h) % Yield Compd Reaction time (h) % Yield
6a
6b
6c
6d
6e
24
36
36
48
40
94
91
92
90
93
6f
6g
6h
6i
36
48
36
24
38
90
80
94
96
94
20. (a) Ramon, D. J.; Miguel, Y. Angew. Chem., Int. Ed. 2005, 44, 1602–1634; (b) Orru,
R. V. A.; de Greef, M. Synthesis 2003, 1471–1499; (c) Ugi, I.; Heck, S. Comb.
Chem. High Throughput Screening 2001, 4, 1–34; (d) Weber, L.; Illgen, K.;
Almstetter, M. Synlett 1999, 366–374.
6j
21. (a) Tu, S.; Jiang, B.; Zhang, Y.; Jia, R.; Zhang, J.; Yao, C.; Feng, S. Org. Biomol.
Chem. 2007, 5, 355–359; (b) Tejedor, D.; Garcia-Tellado, F. Chem. Soc. Rev. 2007,
36, 484–491; (c) Zhu, J.; Bienayme, H. Multicomponent Reactions; Wiley-VCH,
Weinheim: Germany, 2005; (d) Domling, A. Chem. Rev. 2006, 106, 17–89.
22. Wan, J. P.; Gan, S. F.; Sun, G. L.; Pan, Y. J. J. Org. Chem. 2009, 74, 2862–2865.
23. General experimental procedure for the preparation of polysubstituted
dihydropyridines: see Supplementary data.
24. Spectral data of selected polysubstituted dihydropyridines (3a): colorless crystals,
mp 137 °C. IR: mmax cmÀ1 3321, 2986, 2218, 2210, 2209, 1654, 1578, 1400,
1380, 1257, 1156, 994, 874. 1H NMR (CD3)2CO: d 1.35 (s, 3H), 1.39 (s, 3H), 1.93
(s, 3H), 7.04 (s br, exch. D2O, 2H). 13C NMR (CD3)2CO: dC 19.2, 22.3 (2C), 40.8,
49.1, 69.5, 112.0, 113.4, 114.4, 161.4, 166.9. HRMS: m/z (rel. int.) 213.1020
(100) (M+), (calcd for C11H11N5, 213.1014), 187 (58), 172 (72), 107 (34), 106
(28), 66 (35), 41 (42). Anal. Calad for CHN: C, 61.96; H, 5.20; N, 32.84. Found: C,
61.99; H, 5.25; N, 32.86. Compound 3f: colorless crystals, mp 144 °C. IR: mmax
cmÀ1 3325, 2984, 2210, 2209, 1648, 1562, 1465, 1450, 1375, 1350, 1270, 1145,
986, 876. 1H NMR (CD3)2CO: d 1.20 (s, 3H), 1.89 (s, 3H), 2.62 (s br, exch. D2O,
2H), 3.76 (s, 3H), 7.02 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.3 Hz, 2H). 13C NMR
(CD3)2CO: dC 19.6, 26.1, 48.1, 51.3, 57.1, 69.5, 112.2, 114.6, 114.8, 125.4 (2C),
128.6 (2C), 151.2, 158.0, 161.2, 166.7. HRMS: m/z (rel. int.) 305.1282 (100)
(M+), (calcd for C17H15N5O, 305.1277), 279 (59), 264 (73), 198 (26), 107 (38), 66
(33), 41 (45). Anal. Calad for CHN: C, 66.87; H, 4.95; N, 22.94. Found: C, 66.86;
H, 4.99; N, 22.91.
R1
R1
R2
H2N
R2
N
N
NC
LAH, THF, 24 - 48 h
room temp.
CN
NC
H2N
NH2
NH2
3a - 3j
6a - 6j
3a/6a: R1 = R2 = CH3
3f/6f: R1 = CH3; R2 = 4-CH3OC6H5
3g/6g: R1 = CH3; R2 = 4-NO2C6H5
3h/6h: R1 = CH3; R2 =2-ClC6H5
3i/6i: R1 = H; R2 = C2H5
3b/6b: R1 = CH3; R2 = C2H5
3c/6c: R1 = CH3; R2 = C3H7
3d/6d: R1 =CH3; R2 = C3H7
3e/6e: R1 = CH3; R2 = C6H5
3j/6j: R1 = H; R2 = C3H7
Scheme 5. Lithium aluminum hydride reduction of 4-amino-2,3-dihydropyridine-
3,3,5-tricarbonitrile derivatives.
ticomponent reaction of ketones, malononitrile, and acetonitrile
can be scaled up easily. Moreover, the synthesized compounds
may also find significant use for the preparation of complex nitro-
gen heterocycles, with useful pharmacological properties. The
scope of the reaction and further synthetic applications of these
products are currently under investigation in our laboratory.
25. For XRD studies, single crystals were obtained by slow evaporation of the
acetone–chloroform solution of the compound. The compound crystallized in
triclinic form (Table 1 of Supplementary data). The ORTEP diagram of the
compound 3a is given in the Supplementary data for this Letter.
26. General procedure for hydrolysis of 3a–3j: see Supplementary data.
27. Spectral data of selected hydrolysis products (4a): colorless crystals, mp 171 °C.
IR: mmax cmÀ1 3448, 3116, 2925, 2851, 2670, 1691 (COOH), 1607, 1542, 1430,
1351, 1200, 1110, 1014, 932. 1H NMR (CD3OD): d 1.20 (s, 6H), 1.86 (s, 3H), 2.60
(s br, exch. D2O, 2H), 3.10 (s, 1H), 11.46 (s br, exch. D2O, 1H), 12.51 (s br, exch.
D2O, 1H). 13C NMR (CD3OD): dC 22.7, 27.5, 28.3, 43.3, 69.5, 113.9, 167.3, 168.2,
170.0, 178.1. HRMS: m/z (rel. int.) 226.0959 (100) (M+), (calcd for C10H14N2O4,
226.0954), 182 (45), 166 (60), 138 (65), 122 (72), 85 (77). Anal. Calad for CHN:
C, 53.09; H, 6.24; N, 12.38. Found: C, 53.12; H, 6.26; N, 12.32. Compound 4i:
colorless crystals, mp 210 °C. IR: mmax cmÀ1 3452, 3224, 3181, 2673, 1692,
1605, 1572, 1547, 1530, 1410, 1350, 1210, 985. 1H NMR (CD3OD): d 1.24 (t,
J = 6.9 Hz, 3H), 2.56 (s, 3H), 2.36 (q, J = 6.9 Hz, 2H), 4.56 (s br, exch. D2O, 2H),
11.45 (s br, exch. D2O, 2H). 13C NMR (CD3OD): dC 16.8, 22.4, 30.5, 109.5, 109.7,
110.4, 158.1, 166.1, 169.4, 169.6. HRMS: m/z (rel. int.) 224.0790 (100) (M+),
(calcd for C10H12N2O4, 224.0797), 183 (42), 180 (45), 139 (43), 136 (72), 107
(50), 85 (31). Anal. Calad for CHN: C, 53.57; H, 5.39; N, 12.49. Found: C, 53.59;
H, 5.36; N, 12.48. Compound 5i: colorless crystals, mp 187 °C. IR: mmax cmÀ1
3455, 3220, 3184, 2675, 1692, 1606, 1576, 1544, 1533, 1410, 1352, 1210, 986.
1H NMR (CD3OD): d 1.27 (t, J = 6.7 Hz, 3H), 2.48 (q, J = 6.7 Hz, 2H), 2.55 (s, 3H),
3.85 (s br, exch. D2O, 2H), 6.73 (s, 1H), 11.20 (s br, exch. D2O, 1H). 13C NMR
(CD3OD): dC 16.0, 22.5, 31.2, 107.3, 108.8, 160.0, 163.6, 164.1, 169.8. HRMS: m/
z (rel. int.) 180.0895 (100) (M+), (calcd for C9H12N2O2, 180.0899), 139 (42), 136
(72b), 107 (49), 85 (31). Anal. Calad for CHN: C, 59.99; H, 6.71; N, 15.55. Found:
C, 59.96; H, 6.78; N, 15.56.
Acknowledgments
The authors are thankful to Dr. S.K. Koul (Indian Institute of
Integrative Medicine; formerly Regional Research Laboratory, Jam-
mu), Prof. T.S. Banipal and Prof. M.P.S. Isher of Guru Nanak Dev
University, Amritsar (India), for providing spectral facilities. We
are also grateful to Prof. M.S. Hundal, Department of Chemistry,
Guru Nanak Dev University, Amritsar (India), for XRD.
Supplementary data
Supplementary data (experimental procedures, characteriza-
tion data of compounds, crystallographic data, and ORTEP diagram
for compound 3a) associated with this article can be found, in the
References and notes
28. General procedure for lithium–aluminum hydride reduction of 3a–3j: see
Supplementary data.
1. (a) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1; (b) Stout, D.; Meyers, A. Chem.
Rev. 1982, 82, 223; (c) Sausins, A.; Duburs, G. Heterocycles 1988, 27, 291; (d)
Comins, D.; O’Connor, S. Adv. Heterocycl. Chem. 1988, 44, 199.
2. Singer, T. P.; Kearney, E. B. Adv. Enzymol. 1954, 15, 79.
3. Kaplan, N. O. Rec. Chem. Prog. 1955, 16, 177.
4. Westheimer, F. H. Adv. Enzymol. 1962, 24, 469.
5. Chaykin, S. Annu. Rev. Biochem. 1967, 36, 149.
6. Schleifer, K.-J. J. Med. Chem. 1999, 42, 2204.
7. Visentin, S.; Amiel, P.; Frittero, R.; Bpschi, D.; Roussel, C.; Giusta, L.; Carbone, E.;
Gasco, A. J. Med. Chem. 1999, 42, 1422.
29. Spectral data of selected reduced products (6a): colorless crystals, mp 192 °C. IR:
m
max cmÀ1 3240, 3231, 2977, 1640, 1469, 1373, 1350, 1238, 1145, 927. 1H NMR
(CDCl3): d 1.14 (s, 3H), 1.27 (s, 6H), 1.78 (s br, exch. D2O, 4H), 2.0 (s br, exch.
D2O, 2H), 3.62 (t, J = 3.2 Hz, 4H), 4.77 (s, 1H). 13C NMR (CDCl3): dC 16.9, 22.1
(2C), 38.5 (2C, 2x CH2), 45.2, 60.9, 79.5, 162.6, 168.3. HRMS: m/z (rel. int.)
196.1694 (100) (M+), (calcd for C10H20N4, 196.1688), 151 (44), 122 (78), 114
(39), 85 (45), 84 (50), 56 (64), 43 (36). Anal. Calad for CHN: C, 61.19; H, 10.27;
N, 28.54. Found: C, 61.16; H, 10.25; N, 28.50. Compound 6f: colorless crystals,
mp 167 °C. IR: mmax cmÀ1 3230, 2980, 1650, 1641, 1560, 1465, 1456, 1450,
1380, 1350, 1275, 1240, 1210, 1180, 1040, 860, 970. 1H NMR (CDCl3): d 1.13 (s,
3H), 1.25 (s, 3H), 1.80 (s br, exch. D2O, 4H), 2.10 (s br, exch. D2O, 2H), 3.61 (t,
8. Triggle, D. J.; Lang, D. A. Med. Res. Rev. 1989, 9, 123.