Medium-Sized-Ring Biaryl Compounds
FULL PAPER
[4] a) U. B. Olsen, NOVO NORDISK A/S, Novo Alle, DK-2880, Bags-
værd, Denmark, WO9722342, 1997; b) K. E. Andersen, U. B. Olsen,
H. Petersen, F. C. Groenvald, U. Sonnewald, T. K. Joergensen, H. S.
Andersen, NOVO NORDISK A/S, Novo Alle, DK-2880, Bagsværd,
Denmark, WO9518793 (A1), 1995; c) K. Kawashima, T. Saraie, Y.
Kawano, T. Ishiguro, Chem. Pharm. Bull. 1978, 26, 942; d) J. R.
Michel, J. L. Fouche, Rhꢃne-Poulenc S.A., Paris, France, DE
1180751 (B), 1964.
[5] The formation of medium rings from acyclic precursors is disfav-
oured by entropic and enthalpic factors and is thus both thermody-
namically and kinetically challenging; G. Rousseau, Tetrahedron
[6] a) X. B. Su, G. L. Thomas, W. R. J. D. Galloway, D. S. Surry, R. J.
Spandl, D. R. Spring, Synthesis 2009, 3880; b) X. B. Su, D. S. Surry,
X. B. Su, D. J. Fox, V. Franckevicius, S. J. F. Macdonald, D. R.
substrate scope, uses inexpensive copper catalysts and forms
biologically valuable products that are difficult to synthesise
by other methods. Furthermore, the strategy outlined in this
report may conceivably be applied to the synthesis of a vari-
ety of other ring systems, including larger-sized cyclic N-
linked biaryls, N-linked biaryls incorporating heterocycles
and even ring systems involving different biaryl linking het-
eroatoms.[25] As such we envisage that this methodology will
prove useful in a wide synthetic context, with possible appli-
cations in both target-oriented and diversity-oriented syn-
thesis.[26]
Experimental Section
[7] Selected examples of the formation of seven-membered and
medium-sized N-linked biaryl ring systems: for intramolecular aryl–
General experimental procedure for medium-ring biaryl synthesis: Ethyl-
ene glycol (2 mL per mmol substrate) was added to a mixture of the acy-
clic precursor (1 equiv), Cs2CO3 (2 equiv) and CuI (0.1 equiv). The reac-
tion mixture was stirred at 1008C for 3 h, cooled to room temperature
and filtered through Celite. The solution was diluted with Et2O (4.0 mL
per mmol substrate) and the ethylene glycol was removed from the or-
ganic layer by washing with a large excess of water. The organic layer
was washed with brine, dried over Na2SO4 and concentrated under re-
duced pressure. The crude product was purified by using flash column
chromatography on silica.
À
aryl (C C bond) coupling (Ullmann-type chemistry) and intramo-
lecular amide bond formation followed by reduction to form the
amine, see: a) F.-W. Sum, J. Dusza, E. D. Santos, G. Grosu, M.
Reich, X. Du, J. D. Albright, P. Chan, J. Coupet, X. Ru, H. Mazan-
ductive phenylation and cyclisation of nitroarenes (C N bond for-
1980, 102, 6384; c) M. de Carvalho, A. E. P. M. Sorrilha, J. A. R. Ro-
drigues, J. Braz. Chem. Soc. 1999, 10, 415; for 7-membered N-linked
biaryl systems generated by methods involving the direct metal-
mediated N-arylation of acyclic precursors, see: d) M. Carril, R. San-
4787; e) N. Carril, R. SanMartin, E. Dominguez, I. Tellitu, Tetrahe-
Synlett 2008, 1833; g) B. J. Margolis, J. J. Swidorski, B. N. Rogers, J.
Analytical data for 5,6,7,12-tetrahydrodibenzoACTHNUGRTENNU[G b,g]AHCTUNGTRNEN[UGN 1,5]diazocine (11a):
Rf =0.16 (SiO2; MeOH/CH2Cl2, 1:9); 1H NMR (500 MHz, CD3OD): d=
5.66–5.61 (m, 2H; aryl H), 5.57 (dd, J=7.5, 1.5 Hz, 2H; aryl H), 5.40 (dd,
J=8.0, 1.0 Hz, 2H; aryl H), 5.33 (apparent td, J=7.5, 1.0 Hz, 2H; aryl
H), 2.40 (s, 4H; CH2), 1.84–1.81 ppm (m, 2H; NH, CH2NH); 13C NMR
(125 MHz, CD3OD): d=143.80, 130.57, 126.98, 121.36, 118.74, 116.57,
À
À
43.92 ppm; IR: n˜max = 3384 (m; N H), 3288 (m; N H), 3195 (m; aromat-
À
À
À
À
ic C H), 3028 (m; aromatic C H), 2925 (m; C H), 2852 (m; C H), 1727
(m), 1606 (m; aromatic C=C), 1585 (m; aromatic C=C), 1470 (s), 1454
(m), 1332 (s), 1297 (m), 1253 cmÀ1 (m); HRMS (ESI+): m/z calcd for
C14H15N2+: 221.1235 [M+H]+; found: 221.1244 (D=4.3 ppm).
[8] a) E. R. Strieter, D. G. Blackmond, S. L. Buchwald, J. Am. Chem.
P. MendonÅa, J. Chem. Soc. Perkin Trans. 1 1998, 2615; for copper,
Acknowledgements
The authors thank Bayer Schering and the EU, EPSRC, BBSRC, MRC,
Wellcome Trust and Newman Trust for funding.
[9] Selected examples of the formation of medium ring systems by
metal-mediated intramolecular N-arylation: for palladium, see:
14475; for zinc, see: b) R. Omar-Amrani, A. Thoma, E. Brenner, R.
example: b) M. T. Bilodeau, A. E. Balitza, T. J. Koester, P. J. Manley,
L. D. Rodman, C. Buser-Doepner, K. E. Coll, C. Fernandes, J. B.
Gibbs, D. C. Heimbrook, W. R. Huckle, N. Kohl, J. J. Lynch, X.
Mao, R. C. McFall, D. McLoughlin, C. M. Miller-Stein, K. W. Rick-
ert, L. Sepp-Lorenzino, J. M. Shipman, R. Subramanian, K. A.
6363; c) B. M. Andresen, S. Caron, M. Couturier, K. M. DeVries,
N. M. Do, K. Dupont-Gaudet, A. Ghosh, M. Girardin, J. M. Haw-
kins, T. M. Makowski, M. Riou, J. E. Sieser, J. L. Tucker, B. C. Van-
[3] a) P. Onali, S. Dedoni, M. C. Olianas, J. Pharmacol. Exp. Ther. 2010,
332, 255; b) M. Frankowska, A. Golda, K. Wydra, P. Gruca, M.
[11] This may be a particularly relevant consideration as the CuI-mediat-
ed aryl halide activation step is known to be rate determining in the
copper-catalysed N-arylation of amides (see ref. [10]).
[12] Recently, Sperotto et al. have described the use of well-defined ami-
À
noarenethiolato-copper(I) (pre-)catalysts in C N coupling reactions,
in which a copper atom and a chelating amino ꢄarmꢅ are present
within the catalyst structure itself (cf. our work in which the chelat-
ing amino moiety is incorporated into the substrate), see: E. Sperot-
to, G. P. M. Van Klink, J. D. De Vries, G. Van Koten, Tetrahedron
be soluble in common organic solvents. It may be the case that the
chelating nitrogen-type arrangement present in the acyclic substrates
used in our report helps to enhance the solubility of the copper(I)
catalyst, facilitating reactivity.
Chem. Eur. J. 2011, 17, 2981 – 2986
ꢁ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2985