1384
D. A. Scott et al. / Bioorg. Med. Chem. Lett. 21 (2011) 1382–1384
Table 2
Cell potency and physical property data for cinnolines 20a–i
Compound
R1
R2
Cell (l
M)
Quinoline potency
Sol (lM)
PPB (% free)
hERG (lM)
cell2b
(lM)
20a
20b
20c
20d
20e
20f
20g
20h
20i
EtO
EtO
EtO
EtO
2,4-F
0.048
0.013
0.040
0.026
0.014
0.048
0.025
0.057
0.021
0.23
0.05
0.09
0.11
0.06
1.03
—
8
27
120
18
10
290
87
3.9
1.6
11
1.9
<1.7
9.6
6.3
7.1
7.8
16
13
—
12
5
20
>30
18
10
2-F,4-Me
2-F,5-Me
2-F,3-Cl
2,3-Cl
EtO
MeO
MeO
MeO
MeO
2,4-F
2-F,4-Me
2-F,5-Me
2-F,3-Cl
—
—
22
110
N-methylpiperazine at the 6-position delivers compounds with
good physical properties, and an excellent PK profile was observed
for 20b in multiple species. Examples in both the 6,7-dimethoxy
and 7-alkoxy-6-N-methylpiperazino scaffolds demonstrated en-
hanced cellular potency relative to the corresponding quinoline
compounds. Cinnoline 20a also showed an excellent kinase selec-
tivity profile. Our efforts to develop further CSF-1R inhibitors from
the cinnoline class will be reported in due course.
Table 3
Mouse, rat and dog PK data for 20b
Species
Cl (ml/min/kg)
T1/2 (h)
Vss (L/kg)
F (%)
Mouse
Rat
Dog
12
10
2
0.9
9.7
12.6
0.6
2.8
1.8
82
90
78
IV dosing at 3 mpk; oral dosing at 10 mpk for mice, rats, 5 mpk for dogs.
Table 4
Acknowledgments
Kinase selectivity of 20a at 1 mM and 0.1 mM
% Inhibition at 1
lM
% Inhibition at 0.1 lM
We thank Heather Blanchette and Dominique Custeau for PK
studies, and Michael Block, Paul Lyne and Scott Williams for assis-
tance with the manuscript.
CSF-1R
cKit
ARK5
95
90
78
CSF-1R
cKit
ARK5
100
35
23
7
Rsk1
44
Rsk1
MELK
78 Kinases
41
<35
MELK
78 Kinases
15
<30
References and notes
1. Patel, S.; Player, M. R. Curr. Top. Med. Chem. 2009, 9, 599.
2. (a) Scott, D. A.; Balliet, C. L.; Cook, D. J.; Davies, A. M.; Gero, T. W.; Omer, C. A.;
Poondru, S.; Theoclitou, M.-E.; Tyurin, B.; Zinda, M. J. Bioorg. Med. Chem. Lett.
2009, 19, 697; (b) Scott, D. A.; Bell, K. J.; Campbell, C. T.; Cook, D. J.; Dakin, L. A.;
Del Valle, D. J.; Drew, L.; Gero, T. W.; Hattersley, M. M.; Omer, C. A.; Tyurin, B.;
Zheng, X. Bioorg. Med. Chem. Lett. 2009, 19, 701.
3. Drew, L.; Bell, K.; Dakin, L.; Hattersley, M.; Lawson, D.; Repik, G.; Scott, D.; Shen,
M.; Omer, C. Abstract of Papers, 100th Annual Meeting of the American
Association for Cancer Research, Denver, CO, AACR: Philadelphia, PA, 2009;
Abstract 259.
4. Hennequin, L. F.; Thomas, A. P.; Johnstone, C.; Stokes, E. S. E.; Ple, P. A.;
Lohmann, J.-J. M.; Ogilvie, D. J.; Dukes, M.; Wedge, S. R.; Curwen, J. O.; Kendrew,
J.; Lambert-van der Brempt, C. J. Med. Chem. 1999, 42, 5369.
5. Rewcastle, G. W.; Denny, W. A.; Bridges, A. J.; Zhou, H.; Cody, D. R.; McMichael,
A.; Fry, D. W. J. Med. Chem. 1995, 38, 3482.
6,7-dimethoxycinnoline compounds 7a–e and the corresponding
quinoline analogues; several different anilines gave compounds
with a cell IC50 <0.05 lM. The 7-methoxycinnolines 20f–i were
also extremely potent in our cell assay. The introduction of
N-methylpiperazine significantly improved the physical properties
of this series relative to the 6,7-dimethoxy compounds. In particu-
lar, the 7-methoxy examples 20f–i combined excellent cell potency
with good aqueous solubility and plasma protein binding data.
Compounds were screened against the hERG ion channel,12 with
a trend towards the more lipophilic examples showing increased
levels of activity.
An excellent in vivo PK profile was achieved for some examples
of this class of cinnoline. Data for 20b, upon IV and oral dosing in
mice, rats and dogs, are shown in Table 3. Low rates of clearance
were observed in all three species, accompanied by good
bioavailability.
6. Bearss, D. J.; Vankayalapati, H.; Grand, C. L. WO 06124996 A2 20061123; Chem.
Abstr. 145, 505465.
7. Lunniss, C.; Eldred, C.; Aston, N.; Craven, A.; Gohil, K.; Judkins, B.; Keeling, S.;
Ranshaw, L.; Robinson, E.; Shipley, T.; Trivedi, N. Bioorg. Med. Chem. Lett. 2010,
20, 137.
8. Dowlatshahi, H. A. Synth. Commun. 1985, 15, 1095.
9. Scott, D. A.; Aquila, B. M.; Bebernitz, G. A.; Cook, D. J.; Dakin, L. A.; Deegan, T. L.;
Hattersley, M. M.; Ioannidis, S.; Lyne, P. D.; Omer, C. A.; Ye, M.; Zheng, X. Bioorg.
Med. Chem. Lett. 2008, 18, 4794.
10. Sugasawa, T.; Toyoda, T.; Adachi, M.; Sasakura, K. J. Am. Chem. Soc. 1978, 100,
4842.
11. Dahmen, J.; Hemmerling, M.; Klingstedt, T.; Sjoe, P. WO 04016615 A1
20040226; Chem. Abstr. 140, 217650.
12. hERG activity was assessed using the Ionworks assay.
13. KinaseProfiler Department, Millipore UK Limited, Gemini Crescent, Dundee
Technology Park, Dundee DD2 1SW, UK.
We previously reported the kinase selectivity profile of the 3-
amido-4-anilinoquinoline compound AZ683.2b Cinnoline 20a was
also highly selective for CSF-1R. In a panel of 83 kinases,13 cKit
and ARK5 were the only kinases other than CSF-1R against which
it showed significant (IC50 <1 lM) levels of activity (Table 4). Com-
pound 20a had an IC50 <4 nM in our CSF-1R enzyme assay.14
In conclusion, the reported 3-amido-4-anilinocinnoline com-
pounds are very potent inhibitors of CSF-1R. The introduction of
14. Enzyme assay conditions are described in: Dakin, L.; Ogoe, C. A.; Scott, D.;
Zheng, X. WO 2008090353 A1 20080731; Chem. Abstr. 149, 224267.