Please do not adjust margins
New Journal of Chemistry
Page 6 of 8
DOI: 10.1039/C6NJ03876J
ARTICLE
Journal Name
and refined with the olex2.refine41 refinement package using metal porphyrin-catalyzed C−O and C−C bond formaꢀon CDC
Gauss-Newton minimisation. All atoms except for hydrogen reactions are currently going on in our laboratory.
atoms were refined anisotropically.
Crystallographic description of CuTECP
660.14 g/mol), triclinic, space group P-1, a = 6.4200(5) Å, b =
8.6707(7) Å, c = 12.9072(10) Å, α = 85.111(7)°, β =
: C32H28CuN4O8 (M =
Acknowledgements
We gratefully acknowledge financial support from the National
Natural Science Foundation of China (Nos. 21371059;
21671068)
88.215(6)°, γ = 83.692(6)°, V = 711.37(10) Å3, Z = 2, T = 150 K,
μ = 1.615 mm-1, ρcalc = 1.5408 g/cm3, F(000) = 340.1, 6928
reflections measured (11.92° ≤ 2θ ≤ 125.02°), 2249 unique
(Rint = 0.0440, Rsigma = 0.0416) which used in all calculations.
The final R1 was 0.0402 (I>=2σ (I)) and wR2 was 0.1343 (all
data). CCDC 1504785 for compound CuTECP contains the
supplementary crystallographic data for this paper. These data
can be obtained free of charge from The Cambridge
Notes and references
1.
2.
3.
4.
5.
6.
S. H. Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev.,
2011, 40, 5068-5083.
F. Huang, P. Wu, L. D. Wang, J. P. Chen, C. L. Sun and Z. K.
Yu, J. Org. Chem., 2014, 79, 10553-10560.
M. L. Louillat and F. W. Patureau, Chem. Soc. Rev., 2014,
43, 901-910.
B. V. Varun and K. R. Prabhu, J. Org. Chem., 2014, 79,
9655-9668.
I. B. Krylov, V. A. Vil’ and A. O. Terent’ev, Beilstein J. Org.
Chem., 2015, 11, 92-146.
K. Sun, X. Wang, L. L. Liu, J. J. Sun, X. Liu, Z. D. Li, Z. G.
Zhang and G. S. Zhang, ACS Catal., 2015, 5, 7194-7198.
B. M. Rosen, K. W. Quasdorf, D. A. Wilson, N. Zhang, A. M.
Resmerita, N. K. Garg and V. Percec, Chem. Rev., 2011,
111, 1346-1416.
Crystallographic
Data
Centre
via
General Procedure of the CuTECP-Catalyzed Oxidative
Esterification Reaction
In a Schlenk tube equipped with a magnetic stir bar was added
CuTECP (0.17 mg, 0.25 μmol) and benzoic acid (61 mg, 0.5
mmol). 1,4-Dioxane (1.0 mL, 7.5 – 12.5 mmol) and DTBP (di-
tert-butyl peroxide, 1 mmol, 190 μL) were added. The resulting
reaction mixture stirred at 120 °C for 4 h. After the required 7.
reaction time, the mixture cooled to room temperature. The
reaction mixture extracted with dichloromethane. The organic
8.
C. M. So and F. Y. Kwong, Chem. Soc. Rev., 2011, 40, 4963-
4972.
L. G. Xie and Z. X. Wang, Chem. Eur. J., 2011, 17, 4972-
4975.
B. Song, T. Knauber and L. J. Gooßen, Angew. Chem.,
2013, 125, 3026-3030.
C. J. Li, Acc. Chem. Res., 2009, 42, 335-344.
C. J. Scheuermann, Chem. Asian J., 2010, 5, 436-451.
S. A. Girard, T. Knauber and C. J. Li, Angew. Chem. Int. Ed.,
2014, 53, 74-100.
Z. Q. Liu, L. Zhao, X. Shang and Z. Cui, Org. Lett., 2012, 14,
3218-3221.
G. Majji, S. Guin, A. Gogoi, S. K. Rout and B. K. Patel,
Chem. Commun., 2013, 49, 3031-3033.
S. Priyadarshini, P. J. A. Joseph and M. L. Kantam, RSC
Adv., 2013, 3, 18283-18287.
G. Majji, S. Guin, S. K. Rout, A. Behera and B. K. Patel,
Chem. Commun., 2014, 50, 12193-12196.
S. K. Rout, S. Guin, W. Ali, A. Gogoi and B. K. Patel, Org.
Lett., 2014, 16, 3086-3089.
phases evaporated under reduced pressure. The crude product
was purified by column chromatography on silica gel
9.
(hexane/ethyl acetate 95/5) to afford the corresponding
product.
10.
Mechanistic investigation: Trapping of radical intermediates with
radical scavenger
11.
12.
13.
TEMPO (or BHT): An oven-dried reaction vessel was charged
with p-Anisic acid (
mol %), DTBP (190 µL, 1 mmol), radical scavenger (0.5 mmol)
in 1,4-dioxane ( ) (1 mL). The flask fitted to a condenser and
2) (76 mg, 0.5 mmol), CuTECP (1.7 mg, 0.5
14.
15.
16.
17.
18.
19.
20.
21.
a
the resultant reaction mixture stirred in a preheated oil bath at
o
120 C for 4 h. The reaction after 4 h afforded traces (<5%) of
the desired product (2a).
Conclusions
In conclusion, several metal (Cu, Ni, Pd, Ag, Zn) 5,10,15,20-
tetra(ethoxycarbonyl)pophyrin were synthesized and used as
the CDC reaction catalysts. Single crystal X-ray structure
indicated that six-coordinated structure CuTECP observed
through intermolecular coordination of oxygen atoms of the
carbonyl group with central metal ion. We demonstrated that
copper porphyrin was an efficient catalyst for the direct
Q. Wang, H. Zheng, W. Chai, D. Y. Chen, X. J. Zeng, R. Z. Fu
and R. X. Yuan, Org. Biomol. Chem., 2014, 12, 6549-6553.
G. Majji, S. Rajamanickam, N. Khatun, S. K. Santra and B.
K. Patel, J. Org. Chem., 2015, 80, 3440-3446.
G. Majji, S. K. Rout, S. Rajamanickam, S. Guin and B. K.
Patel, Org. Biomol. Chem., 2016, 14, 8178-8211.
C. Singh, S. Chaudhary and S. K. Puri, Bioorg. Med. Chem.
Lett., 2008, 18, 1436-1441.
esterification of C(sp3)−H bond using DTBP as oxidant. Various 22.
carboxylic acids, symmetric and asymmetric ethers well
23.
24.
25.
X. B. Su, D. S. Surry, R. J. Spandl and D. R. Spring, Org.
Lett., 2008, 10, 2593-2596.
J. C. Zhao, H. Fang, W. Zhou, J. L. Han and Y. Pan, J. Org.
Chem., 2014, 79, 3847-3855.
D. Talukdar, S. Borah and M. K. Chaudhuri, Tetrahedron
Lett., 2015, 56, 2555-2558.
tolerated in this catalytic system with moderate to excellent
yields and completely controlled regioselectivity. The
intermolecular competing kinetic isotope effect (KIE)
experiment indicated that C(sp3)−H bond cleavage was the
rate-determining step of this reaction. Further studies on
6 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins