N.T. Abdel Ghani, A.M. Mansour / Journal of Molecular Structure 991 (2011) 108–126
125
[9] (a) Phillips, J. Chem. Soc. (1928) 2393;
(b) H. Skolnik, J. Miller, A.R. Day, J. Am. Chem. Soc. 65 (1943) 1854.
[10] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
of inhibiting the metabolic growth of the investigated bacteria to
different extent and these benzimidazoles L1,2 are more toxic than
their metal complexes. This may be attributed to the inability of
the complexes to chelate metals essential for the metabolism of
microorganisms and/or to form hydrogen bonds with the active
centers of cell structures, resulting in an interference with the nor-
mal cell cycle. All the studied complexes showed activity against
three cell lines of different origin, breast cancer (MCF-7), Colon car-
cinoma (HCT) and human heptacellular carcinoma (Hep-G2) and
represent an interesting class of new compounds from the view-
point of their physicochemical and structural properties. The re-
sults obtained can be useful in having of an understanding of the
factors that influence activity of the complexes and in supporting
the general assumption that relationship between structure and
activity is extremely complex. On the basis of the agreement be-
tween the calculated and experimental results, assignments of all
the fundamental vibrational modes of benzimidazole L were exam-
ined and proposed at higher level of theory. The natural bond orbi-
tal (NBO) analysis has provided the detailed insight into the type of
hybridization and the nature of bonding in the studied complexes.
Comparison has been done with the data obtained for cis-platin.
The strong coordination bonds (LP(1)N11 ? rꢀ(PdACl22)) and
(LP(1)N21 ? rꢀ(PdACl23)) result from donation of electron den-
sity from a lone pair orbital on the nitrogen atoms to the acceptor
palladium molecular orbitals. Based on the results obtained from
the physico-chemical techniques and theoretical calculation of
the metal complexes; one can conclude that the studied ligands
behave as neutral bidentate ligands coordinated to the metal ions
via he pyridine-type nitrogen of the benzimidazole ring and sec-
ondary amino group. Thus, square-planar geometry is suggested
for all the studied complexes; [PdL1Cl2]ꢃ3H2O, [PtL1Cl2]ꢃH2O,
[PdL2Cl2] and [PtL2Cl2]ꢃ2H2O.
[11] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B. 37 (1998) 785.
[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman,
V.G. Zakrzewski, J.A. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M.
Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M.
Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A.
Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K.
Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox,
T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, C. Gonzalez, M.
Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, M.
Head-Gordon, E.S. Replogle, J.A. Pople, GAUSSIAN 03 (Revision A.9), Gaussian,
Inc., Pittsburgh, 2003.
[13] H.B. Schlegel, J. Comput. Chem. 3 (1982) 214.
[14] A. Frisch, A.B. Nielson, A.J. Holder, GAUSSVIEW User Manual, Gaussian Inc.,
Pittsburgh, PA, 2000.
[15] R. Ditchfield, Chem. Phys. 76 (1972) 5688.
[16] (a) D. Greenwood, Antimicrobial Chemotherapy, Bailliere, Tindall, London. Part
II. Laboratory Aspects of Antimicrobial Therapy, 1983, p. 71.;
(b) V. Lorian, Antibiotics in Laboratory Medicine, Williams & Wilkins, Baltimore,
1996.
[17] National Committee for Clinical Laboratory Standards, NCCLS Approval
Standard Document M2-A7, Vilanova, PA, 2000.
[18] C.M. Lozano, O. Cox, M.M. Muir, J.D. Morales, J.L. Rodr
9
i
guez-Cabáin, P.E. Vivas-
Mejfa, F.A. Gonzalez, Inorg. Chim. Acta 271 (1998) 137–144.
[19] (a) P. Skehan, R. Smreng, D. Scudiero, A. Monks, J. McMahon, D. Vistica, J.T.
Warren, H. Bokesch, S. Kenney, M.R. Boyd, J. Nat. Cancer Inst. 82 (1990) 107–
1112;
(b) A. Monks, D. Scudiero, P. Skehan, K. Paull, D. Vistica, C. Hose, J. Langley, P.
Cronise, A. Viagro-Wolff, M. Gra-Goodrich, J. Nat. Cancer Inst. 83 (1991) 757–
766.
[20] (a) G. Rauhut, P. Pulay, J. Phys. Chem. 99 (1995) 3093–3100;
(b) J.A. Pople, H. B. Schlegel, R. Krishnan, J.S. Defrees, J.S. Binkley, M.J. Frisch,
R.A. Whiteside, Int. J. Quantum Chem.: Quantum Chem. Symp. 15 (1981) 269.
[21] (a) M.W. Ellzy, J.O. Jensen, H.F. Hameka, J.G. Kay, D. Zeroka, Spectrochim. Acta
A 57 (2001) 2417;
(b) J.O. Jensen, A. Banerjee, C.N. Merrow, D. Zeroka, J.M. Lochner, J. Mol. Struct.:
Theochem. 531 (2000) 323;
(c) J.O. Jensen, D. Zeroka, J. Mol. Struct.: Theochem. 487 (1999) 267.
[22] O. Sala, N.S. Goncalves, L.K. Noda, J. Mol. Struct. 411 (2001) 565–566.
[23] K. Hofmann, Imidazole and its Derivatives, Interscience Publishers, New York,
1953.
[24] S. Satyanarayana, K.R. Nagasundara, Synth. React. Inorg. Met.-org. Chem. 34 (5)
(2004) 883–895.
Acknowledgments
[25] R.W. Hay, T. Clifford, P.L. Foot, Polyhedron 17 (20) (1998) 3575.
[26] S. Mohan, N. Sundaraganesan, Spectrochim. Acta A 47 (1991) 1111.
[27] N. Sundaraganesan, S. Ilakiamani, P. Subramani, B. Dominic Joshua,
Spectrochim. Acta A 67 (2007) 628–635.
[28] N.M. Agathabay, M. Tulu, M. Somer, D. Haciu, A. Yilmaz, Struct. Chem. 19
(2008) 21.
We would like to extend our grateful thanks to Prof. Rifaat Hilal,
Chemistry Department, Faculty of Science, Cairo University for
allowing us to use his version of the Guassian98W package of pro-
grams. Deep thanks to Prof. Dr. Samia Showman, professor of Med-
ical Biochemistry, National Cancer Centre, Cairo University, for the
great helps and support during the biological part.
[29] F.S. Miranda, F.G. Menezes, J. Vicente, A.J. Bortoluzzi, C. Zucco, A. Neves, N.S.
Gonçalves, J. Mol. Struct. 938 (2009) 1–9.
[30] K. Nakamoto, ‘‘Infrared and Raman Spectra of Inorganic and Coordination
Compounds’’, Part B: Applications in Coordination, Organometallic, and
Bioinorganic Chemistry, sixth ed., John Wiley & Sons Inc., New Jersey, 2009.
[31] (a) V. Arjunan, I. Saravanan, P. Ravindran, S. Mohan, Spectrochim. Acta A 74
(2009) 642–649;
References
(b) P.S. Kalsi, Spectroscopy of Organic Compounds, sixth ed., New Age
International (P) Limited Publishers, New Deihi, 2005.
[32] D.K. Lavallee, M.D. Baughman, M.P. Phillips, J. Am. Chem. Soc. 99 (1977) 718.
[33] W. Nawrocka, B. Sztuba, M.W. Kowalaka, H. Liszkiewicz, Farmaco 59 (2004)
83.
[34] N.M. Aghatabay, M. Somer, M. Senel, B. Dulger, F. Gucin, Eur. J. Med. Chem. 42
(2007) 1069–1075.
[35] M.R. Figueroa, D.E. Gomez, C.P. Iglesias, A. De Blas, T.R. Blas, Eur. J. Inorg. Chem.
(2007) 2198.
[36] J.D. Crane, R. Hughes, E. Sinn, Inorg. Chim. Acta 237 (1995) 181–185.
[37] B. Blicharskaa, T. Kupka, J. Mol. Struct. 613 (2002) 153–166.
[38] R.M. Issa, A.A. Hassanein, I.M. El-Mehasseb, R.I.Abed. El-Wadoud, Spectrochim.
Acta A 65 (2006) 206–214.
[39] M. Krishnamurthy, P. Phaniraj, S.K. Dogra, J. Chem. Soc. Perkin Trans. II (1986)
1917–1925. and the references therein.
[40] A.K. Mishra, S.K. Dogra, Bull. Chem. Soc. Jpn. 58 (1985) 3587;
A.K. Mishra, S.K. Dogra, J. Photochem. 31 (1985) 333;
A.K. Mishra, S.K. Dogra, Indian J. Phys., Sect. B 54 (1984) 480;
A.K. Mishra, S.K. Dogra, Spectrochim. Acta A 39 (1983) 609.
[41] G.G. Araya-Hernandez, R.G.E. morales, J. Photochem. Photobiol. A: Chem. 177
(2006) 125.
[1] (a) I.H. Krakoff, in: M. Nicali (Ed.), Platinum and Other Metal Coordination
Compounds in Cancer Chemotherapy, Clinical Application of Platinum
Complexes, Martinus Nijhoff, Boston, MA, 1988, p. 351;
(b) E.R. Jamieson, S.J. Lippard, Chem. Rev. 99 (1999) 2467–2498.
[2] I. Kostova, Recent Patents on Anti-Cancer Drug Discovery 1 (2006) 1–22.
[3] (a) F. Gumus, G. Eren, L. Acik, A. Celebi, F. Ozturk, R. Ilikci Sagkan, S. Gur, A.
Ozkul, A. Elmali, Y. Elerman, J. Med. Chem. 52 (5) (2009) 1345–1357;
(b) M. Goekce, S. Utku, S. Guer, A. Oezkul, F. Gumus, Eur. J. Med. Chem. 40 (2)
(2005) 135–141;
(c) F. Gumus, O. Algul, G. Eren, H. Eroglu, N. Diril, S. Gur, A. Ozkul, Eur. J. Med.
Chem. 38 (5) (2003) 473–480;
(d) F. Gumus, A.B. Demirci, T. Oezden, H. Eroglu, N. Diril, Pharmazie 58 (5)
(2003) 303–307;
(e) F. Gumus, I. Pamuk, T. Oezden, S. Yildiz, N. Diril, E. Oksuzoglu, S. Gur, A.
Ozkul, J. Inorg. Biochem. 94 (3) (2003) 255–262.
[4] (a) V. Rajendiran, M. Murali, E. Suresh, S. Sinha, K. Somasundaram, M.
Palaniandavar, Dalton Trans. (2008) 148;
(b) J. Mann, A. Baron, Y. Opoku-Boahen, E. Johansson, G. Parkinson, L.R. Kelland,
S. Neidle, J. Med. Chem. 44 (2001) 138.
[5] J.B. Camden, US Patent 6,077,862, 2002.
[6] P.K. Naithani, V.K. Srivastava, A.K. Saxena, J.P. Barthwal, T.K. Gupta, K. Shanker,
Indian J. Exp. Biol. 28 (1990) 1145.
[7] N.M. Goudgaon, V. Dhondiba, A. Vijayalaxmi, Indian J. Heterocycl. Chem. 13
(2004) 271.
[8] (a) E. Bouwmann, W.L. Driessen, J. Reedijk, Coord. Chem. Rev. 104 (1990) 143;
(b) M.A. Puja, T.D. Bharamgouda, N.D. Sathyanarayna, Trans. Met. Chem. 13
(1988) 423.
[42] R.M. Issa, S.A. El-Daly, N.A. El-Wakiel, Spectrochim. Acta A 59 (2003) 723–728.
[43] O.E. Offiong, S. Martelli, Trans. Met. Chem. 22 (1997) 263–269.
[44] (a) A.B.P. Lever, Inorganic Electronic Spectroscopy, second ed., Elsevier,
Amsterdam, 1982. pp. 544–552;
(b) D.X. West, M.S. Lockwood, A. Liberta, X. Chen, R.D. Willet, Trans. Met.
Chem. 18 (1993) 221.