LETTER
Cycloisomerization of 2-Alkynyl-3-nitrothiophenes
3029
as side products in low yields.4a The authors proposed a
mechanism for these reactions and postulated therein that
water present in the solvents played a key role in the
cycloisomerization step.
Acknowledgment
We thank the Lithuanian Research Council for the financial support
from the Global Grant Programme (Grant No. VP1-3.1-ŠMM-07-
K-01-002). Rokas Sazinas acknowledges Student Research Fel-
lowship Award from the Lithuanian Research Council.
However, we speculate that the cycloisomerization of ar-
omatic or heteroaromatic compounds bearing nitro group
and triple bond moiety in close proximity to each other
takes place via intramolecular oxidation–reduction pro-
cesses via subsequent ring cleavage and recyclization re-
actions. Moreover, we performed the cycloisomerization
reactions in absolute solvent and precisely avoided the
presence of water; so therefore, we think that oxygen in
carbonyl function came from the nitro group, not from the
water.
References and Notes
(1) (a) Cacchi, S.; Fabrizi, G.; Moro, L. Tetrahedron Lett. 1998,
39, 5101; and references cited therein. (b) Chaudhuri, G.;
Chowdhury, C.; Kundu, N. G. Synlett 1998, 1273.
(c) Montiero, N.; Balme, G. Synlett 1998, 746.
(d) Chowdhury, C.; Chaudhuri, G.; Guha, S.; Mukherjee, A.
K.; Kundu, N. G. J. Org. Chem. 1998, 63, 1863. (e)Cacchi,
S.; Fabrizi, G.; Moro, L. J. Org. Chem. 1997, 62, 5327.
(f) Khan, M. W.; Kundu, N. G. Synlett 1997, 1435.
(g) Cacchi, S.; Fabrizi, G.; Marinelli, F.; Moro, L.; Pace, P.
Synlett 1997, 1363. (h) Arcadi, A.; Cacchi, S.; Del Rosario,
M.; Fabrizi, G.; Marinelli, F. J. Org. Chem. 1996, 61, 9280.
(i) Chowdhury, C.; Kundu, N. G. Chem. Commun. 1996,
1067. (j) Kundu, N. G.; Pal, M. J. Chem. Soc., Chem.
Commun. 1993, 86. (k) Candiani, I.; DeBernardinis, S.;
Cabri, W.; Marchi, M.; Bedeschi, A.; Penco, S. Synlett 1993,
269. (l) Zhang, H.; Brumfield, K. K.; Jaroskova, L.;
Maryanoff, B. E. Tetrahedron Lett. 1998, 39, 4449.
(m) Fancelli, D.; Fagnola, M. C.; Severino, D.; Bedeschi, A.
Tetrahedron Lett. 1997, 38, 2311. (n) Fagnola, M. C.;
Candiani, I.; Visentin, G.; Cabri, W.; Zarini, F.; Mongelli,
N.; Bedeschi, A. Tetrahedron Lett. 1997, 38, 2307.
(o) Gabriele, B.; Salerno, G.; Fazio, A.; Bossio, M.
Tetrahedron Lett. 2001, 42, 1339. (p) Monteiro, N.; Arnold,
A.; Balme, G. Synlett 1998, 1111. (q) Larock, R. C.; Pace,
P.; Yang, H.; Russell, C. E. Tetrahedron 1998, 54, 9961.
(r) Cacchi, S.; Fabrizi, G.; Moro, L. Synlett 1998, 741.
(s) Cacchi, S.; Fabrizi, G.; Moro, L. J. Org. Chem. 1997, 62,
527; and references cited therein. (t) Balme, G.; Bouyssi, D.
Tetrahedron 1994, 50, 403.
Table 2 Cycloisomerization of 2-Alkynyl-3-nitrothiophenes 1 and
3-Alkynyl-2-nitrothiophenes 4 by the Presented Method
Entry Starting material
Product
Yield (%)
N
NO2
O
R
R
S
S
O
1
2
3
4
5
1a, R = Ph
2a, R = Ph
97
92
98
89
-
1b, R = 4-MeC6H4 2b, R = 4-MeC6H4
1c, R = 4-EtC6H4
1d, R = 2-pyridyl
1e, R = SiMe3
2c, R = 4-EtC6H4
21d, R = 2-pyridyl
slow decomposition of
starting material
6
7
8
1f, R = H
2f, R = H
87
90
88
(2) (a) Takeda, A.; Kamijo, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2000, 122, 5662. (b) Gabriele, B.; Salerno, G.; Fazio,
A. Org. Lett. 2000, 2, 351. (c) Arcadi, A.; Cacchi, S.;
Del Rosario, M.; Fabrizi, G.; Marinelli, F. J. Org. Chem.
1996, 61, 9280. (d) Cacchi, S.; Fabrizi, G.; Moro, L.
Tetrahedron Lett. 1998, 39, 5101. (e) Roesh, K. R.; Larock,
R. C. Org. Lett. 1999, 1, 553. (f) Roesh, K. R.; Larock, R. C.
J. Org. Chem. 2002, 67, 86. (g) Dai, G.; Larock, R. C. Org.
Lett. 2001, 3, 4035. (h) Dai, G.; Larock, R. C. Org. Lett.
2002, 4, 193. (i) Zhang, H.; Larock, R. C. J. Org. Chem.
2002, 67, 7048. (j) Yue, D.; Della Ca, N.; Larock, R. C. Org.
Lett. 2004, 1581. (k) Yue, D.; Della Ca, N.; Larock, R. C.
J. Org. Chem. 2005, 3381.
1g, R = Bu
1h, R = t-Bu
2g, R = Bu
2h, R = t-Bu
N
O
NO2
S
S
R
R
O
9
4a, R = Ph
5a, R = Ph
45a
41
10
4b, R = 4-FC6H4
5b, R = 4-FC6H4
a incomplete conversion of starting material.
(3) (a) Pfeiffer, P. Justus Liebigs Ann.Chem. 1916, 411, 72.
(b) Bond, C. C.; Hooper, M. J. Chem. Soc. 1969, 2453.
(c) Price, D. W.; Dirk, S. M.; Maya, F.; Tour, J. M.
Tetrahedron 2003, 59, 2497. (d) Ruggli, C. Helv. Chim.
Acta 1944, 27, 649. (e) Nepveu, F.; Kim, S.; Boyer, J.;
Ibrahim, H.; Reybier, K.; Monje, M.-C.; Chevalley, S.;
Perio, P.; Lajoie, B. H.; Bouajila, J.; Deharo, E.; Sauvain,
M.; Valentin, A.; Chatriant, O.; Petit, S.; Nallet, J.-P.; Tahar,
R.; Basco, L.; Pantaleo, A.; Turini, F.; Arese, P.; Thompson,
E.; Vivas, L. J. Med. Chem. 2010, 53, 699. (f) Adams, D.
B.; Hooper, M.; Morpeth, A. G.; Raper, E. S.; Clegg, W.;
Stoddart, B. J. Chem. Soc., Perkin Trans. 2 1990, 1269.
(g) Baeyer, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1741.
(h) Baeyer, A. Ber. Dtsch. Chem. Ges. 1882, 15, 775.
(i) Pfeiffer, P. Ber. Dtsch. Chem. Ges. 1912, 45, 1819.
(j) Pfeiffer, P.; Kramer, E. Ber. Dtsch. Chem. Ges. 1913, 46,
In conclusion, we have presented unexpected regioselec-
tive cycloisomerization reactions of 2-alkynyl-3-
nitrothiophenes. The novel, simple, and high-yielding
synthetic method of thieno[3,2-c]isoxazole framework
was proposed. Extension of regioselective cycloizomer-
izations of aromatic and heteroaromatic compounds, bear-
ing triple bond and nitro group in close proximity to each
other, is currently under way in our laboratory. More de-
tailed study of the mechanism of the cycloisomerizations
together with their scope and limitations are in progress,
and the results will be published in due course.
Synlett 2010, No. 20, 3027–3030 © Thieme Stuttgart · New York