ACS Medicinal Chemistry Letters
LETTER
’ ACKNOWLEDGMENT
(19) Cannon, C. P.; Shah, S.; Dansky, H. M.; Davidson, M.; Brinton,
E. A.; Gotto, A. M.; Stephanavage, M.; Liu, S. X.; Gibbons, P.; Ashraf,
T. B.; Zafarino, J.; Mitchel, Y.; Barter, P. Safety of anacetrapib in patients
with or at high risk for coronary heart disease. N. Engl. J. Med. 2010,
363, 2046.
We acknowledge Cameron Smith for careful reading of this
manuscript and suggestions.
(20) Lu, Z.; Napolitano, J. B.; Theberge, A.; Ali, A.; Hammond,
M. L.; Tan, E.; Tong, X.; Xu, S. X.; Latham, M. J.; Peterson, L. B.;
Anderson, M. S.; Eveland, S. S.; Guo, Q.; Hyland, S. A.; Milot, D. P.;
Chen, Y.; Sparrow, C. P.; Wright, S. D.; Sinclair, P. J. Design of a novel
class of biphenyl CETP inhibitors. Bioorg. Med. Chem. Lett. 2010,
20, 7469.
(21) For a good overview of other approaches to CETP inhibitors,
see ref 8 and the following review article:Hunt, J. A.; Lu, Z. Cholesteryl
ester transfer protein (CETP) inhibitors. Curr. Top. Med. Chem. 2009,
9, 419.
(22) The ability of compounds to inhibit transfer of CE by CETP
(IC50 values in Table 1) was determined using a fluorescence transfer
assay that has been described in detail. See the following:Eveland, S. S.;
Milot, D. P.; Guo, Q.; Chen, Y.; Hyland, S. A.; Peterson, L. B.; Jezequel-
Sur, S.; O'Donnell, G. T.; Zuck, P. D.; Ferrer, M.; Strulovici, B.; Wagner,
J. A.; Tanaka, W. K.; Hilliard, D. A.; Laterza, O.; Wright, S. D.; Sparrow,
C. P.; Anderson, M. S. A high-precision fluorogenic cholestery ester
transfer protein assay compatible with animal serum and 3456-well assay
technology. Anal. Biochem. 2007, 368, 239.
(23) Amino alcohol 6 is a weak inhibitor of CE transfer (IC50 value
for the inhibition of CE transfer = 5.2 μM). Likewise, compound 5 has
little activity (IC50 value for the inhibition of CE transfer = 13.7 μM).
(24) In the cases of R- and S-styrene oxide, attack at both the
benzylic and the terminal positions of the epoxide was observed, as had
been originally anticipated for 4. Attack at the benzylic carbon resulted in
a less polar product (Rf = 0.32 in 25% ethyl acetate/hexanes) that was
readily separated using silica gel chromatography from the desired, more
polar product resulting from attack at the terminal carbon (Rf = 0.11 in
25% ethyl acetate/hexanes)
’ REFERENCES
(1) Linsel-Nitschke, P.; Tall, A. R. HDL as a target in the treatment of
atherosclerotic cardiovascular disease. Nature Rev. Drug Discovery 2005, 4, 193.
(2) Rader, D. J. Mechanisms of disease: HDL metabolism as a target
for novel therapies. Nature Clin. Pract. Cardiovasc. Med. 2007, 4, 102.
(3) Wang, M.; Briggs, M. R. HDL: The metabolism, function, and
therapeutic importance. Chem. Rev. 2004, 104, 119.
(4) Chapman, M. J. Therapeutic elevation of HDL-cholesterol to
prevent atherosclerosis and coronary heart disease. Pharmacol. Ther.
2006, 111, 893.
(5) Birjmohun, R. S.; Hutten, B. A.; Kastelein, J. J. P.; Stroes, E. S. G.
Efficacy and safety of high-density lipoprotein cholesterol-increasing
compounds: A meta-analysis of randomized controlled trials. J. Am. Coll.
Cardiol. 2005, 45, 185.
(6) Taylor, A. J.; Sullenberger, L. E.; Lee, H. J.; Lee, J. K.; Grace, K. A.
Arterial biology for the investigation of the treatment effects of reducing
cholesterol (ARBITER) 2: A double-blind, placebo-controlled study of
extended-release niacin on atherosclerosis progression in secondary
prevention patients treated with statins. Circulation 2004, 110, 3512.
(7) Barter, P. J.; Brewer, H. B.; Chapman, M. J.; Hennekens, C. H.;
Rader, D. J.; Tall, A. R. Cholesteryl ester transfer protein: A novel target
for raising HDL and inhibiting atherosclerosis. Arterioscler. Thromb.
Vasc. Biol. 2003, 23, 160.
(8) Sikorski, J. A. Oral cholesteryl ester transfer protein (CETP)
inhibitors: A potential new approach for treating coronary artery disease.
J. Med. Chem. 2006, 49, 1.
(9) Shah, P. K. Inhibition of CETP as a novel therapeutic strategy for
reducing the risk of atherosclerotic disease. Eur. Heart J. 2007, 28, 5.
(10) Ansell, B.; Hobbs, F. D. R. The potential for CETP inhibition to
reduce cardiovascular disease risk. Curr. Med. Res. Opin. 2006, 22, 2467.
(11) Brousseau, M. E.; Schaefer, E. J.; Wolfe, M. L.; Bloedon, L. T.;
Digenio, A. G.; Clark, R. W.; Mancuso, J. P.; Rader, D. J. Effects of an
inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N.
Engl. J. Med. 2004, 350, 1505.
(25) The weak inhibitory activity seen for compound 10 is pre-
sumably due to the fact that the starting commercially available S-styrene
oxide is 98% ee (purchased from Aldrich). The starting R-styrene oxide
(also from Aldrich) leading to 11 is 95% ee. No erosion of stereochem-
ical integrity was anticipated during the synthesis of 10 and 11, and the
ee of the final products is assumed to be that of the starting materials.
(12) Clark, R. W.; Sutfin, T. A.; Ruggeri, R. B.; Willauer, A. T.;
Sugarman, E. D.; Magnus-Aryitey, G.; Cosgrove, P. G.; Sand, T. M.;
Wester, R. T.; Williams, J. A.; Perlman, M. E.; Bamberger, M. J. Raising
high-density lipoprotein in humans through inhibition of cholesteryl
ester transfer protein: An initial multidose study of torcetrapib. Arter-
ioscler. Thromb. Vasc. Biol. 2004, 24, 490.
(13) Barter, P. J.; Caulfield, M.; Eriksson, M.; Grundy, S. M.;
Kastelein, J. J. P.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif,
J.-C.; Waters, D. D.; Shear, C. L.; Revkin, J. H.; Buhr, K. A.; Fisher, M. R.;
Tall, A. R.; Brewer, B. Effects of torcetrapib in patients at high risk for
coronary events. N. Engl. J. Med. 2007, 357, 2109.
(14) Tall, A. R.; Yvan-Charvet, L.; Wang, N. The failure of torce-
trapib: was it the molecule of the mechanism?. Arterioscler. Thromb. Vasc.
Biol. 2007, 27, 257.
(15) Rader, D. J. Illuminating HDL—Is it still a viable therapeutic
target?. N. Engl. J. Med. 2007, 357, 2180.
(16) Toth, P. P. Torcetrapib and atherosclerosis: What happened
and where do we go from here?. Future Lipidol. 2007, 2, 277.
(17) Nicholls, S. J. HDL: Still a target for new therapies?. Curr. Opin.
Invest. Drugs 2008, 9, 950.
(18) Forrest, M. J.; Bloomfield, D.; Briscoe, R. J.; Brown, P. N.;
Cumiskey, A-M; Ehrhart, J.; Hershey, J. C.; Keller, W. J.; Ma, X.;
McPherson, H. E.; Messina, E.; Peterson, L. B.; Sharif-Rodriguez, W.; Siegl,
P. K. S.; Sinclair, P. J.; Sparrow, C. P.; Stevenson, A. S.; Sun, S-Y; Tsai, C.;
Vargas, H.; Walker, M., III; West, S. H.; White, V.; Woltmann, R. F.
Torcetrapib-induced blood pressure elevation is independent of CETP
inhibition and is accompanied by increased circulating levels of aldosterone.
Br. J. Pharmacol. 2008, 154, 1465.
427
dx.doi.org/10.1021/ml100309n |ACS Med. Chem. Lett. 2011, 2, 424–427