N-arylacrylamide derivatives (3) to afford 3,30-disubsti-
tuted oxindoles (4, Scheme 1, eq 2). To the best of our
knowledge, this work constitutes the first examples of
iodo-carbocyclization of electron-deficient olefins. The
unique cyclization mode is also noteworthy as it proceeds
via an unusual formal 5-exo-trig cyclization mode in sharp
contrast to the cyclization of structurally similar N-pro-
tected-N-allylanilines (1).9
anilides have been developed.13,14 We have been involved
in the development of a palladium-catalyzed synthesis of
oxindoles15 and have recently reported an oxidative palla-
dium-catalyzed carbo-heterofunctionalization of alkenes 3
involving a direct aromatic CꢀH functionalization step.16
Stimulated by the recent development of halonium-
mediated carbocyclization processes,4ꢀ6 we became inter-
ested in investigating the cyclization of 3 under metal-free
conditions using 3a as a model substrate.
As shown in Table 1, our initial survey of reaction
conditions using molecular iodine (I2), iodine monochlo-
ride (ICl), or Barluenga’s reagent (Py2IBF4/HBF4)17 as
iodonium sources showed them to be inefficient at promot-
ing the desired transformation. However, acombination of
oxidant [PhI(OAc)2, IBX (2-iodoxybenzoic acid), AgOAc,
or PhI(OCOCF3)2] with iodine in acetic acid (AcOH)
furnished in each case the oxindole 4a, with PhI(OAc)2/
I2 being the most effective.18 In sharp contrast to the
cyclization of 1 reported by Barluenga (eq 1, Scheme 1),5
a 5-exo-trig iodo-carbocyclization occurred in our case
leading to oxindole with concurrent iodination of the
aromatic ring.
Scheme 1. Different Cyclization Modes for Iodoarylation
Using PhI(OAc)2/I2 as an iodonium source, we next
investigated the solvent effect. The reaction was less effi-
cient in more acidic media (TFA, entry 8, Table 1) and
failed to take place in MeOH (entry 9). Among other
screened solvents [CH2Cl2, THF, EtOAc, 1,2-dichloro-
ethane (DCE), dioxane, MeCN, DMF, DMSO], aceto-
nitrile (MeCN) was found to be the most efficient one to
3,30-Disubstituted oxindoles are highly valuable syn-
thetic targets due to their presence in a wide range of
natural products, pharmaceuticals, and agrochemicals.10
Among known synthetic strategies, palladium-catalyzed
cyclization of ortho-functionalized anilides was particularly
successful.11 More recently, metal-catalyzed CꢀH activa-
tion12/cyclization processesstarting from unfunctionalized
(13) Palladium-catalyzed: (a) Hennessy, E. J.; Buchwald, S. L. J. Am.
Chem. Soc. 2003, 125, 12084–12085. (b) Tang, S.; Peng, P.; Pi, S.-F.;
Liang, Y.; Wang, N.-X.; Li, J.-H. Org. Lett. 2008, 10, 1179–1182. (c)
Jiang, T.-S.; Tang, R.-Y.; Zhang, X.-G.; Li, X.-H.; Li, J.-H. J. Org.
Chem. 2009, 74, 8834–8837. (d) Ueda, S.; Okada, T.; Nagasawa, H.
Chem. Commun. 2010, 46, 2462–2464. (e) An, G.; Zhou, W.; Zhang, G.;
Sun, H.; Han, J.; Pan, Y. Org. Lett. 2010, 12, 4482–4485. Copper-
(9) For synthesis of indoles via formal 5-endo-dig iodo-heterocycliza-
tion, see: (a) Barluenga, J.; Trincado, M.; Rubio, E.; Gonzalez, J. M.
Angew. Chem., Int. Ed. 2003, 42, 2406–2409. (b) Amjad, M.; Knight,
D. W. Tetrahedron Lett. 2004, 45, 539–541. (c) Yue, D.; Larock, R. C.
Org. Lett. 2004, 6, 1037–1040. For iodoarylation of electron-rich
enamine to 3H-indoles via a formal 5-endo-trig iodoarylation process,
see: (d) He, Z.; Li, H.; Li, Z. J. Org. Chem. 2010, 75, 4636–4639. (e) For
PhI(OAc)2-mediated aminotrifluoroacetoxylation of alkenes, see:
Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc. 2010, 132, 1249–1251.
(10) For recent reviews, see: (a) Marti, C.; Carreira, E. M. Eur. J. Org.
Chem. 2003, 12, 2209–2219. (b) Williams, R. M.; Cox, R. J. Acc. Chem.
Res. 2003, 36, 127–139. (c) Galliford, C. V.; Scheidt, K. A. Angew.
Chem., Int. Ed. 2007, 46, 8748–8758. (d) Trost, B.; Brennan, M. K.
Synthesis 2009, 3003–3025. (e) Zhou, F.; Liu, Y.-L.; Zhou, J. Adv. Synth.
Catal. 2010, 352, 1381–1407. (f) Millemaggi, A.; Taylor, R. J. K. Eur.
J. Org. Chem. 2010, 4527–4547.
(11) For selected examples of an intramolecular Heck reaction, see:
(a) Grigg, R.; Sridharan, V. J. Organomet. Chem. 1999, 576, 65–87. (b)
Dounay, A. B.; Overman, L. E. Chem. Rev. 2003, 103, 2945–2963. For
intramolecular amidation processes, see: (c) Fielding, M. R.; Grigg, R.;
Urch, C. H. Chem. Commun. 2000, 2239–2240. (d) Kamijo, S.; Sasaki,
Y.; Kanazawa, C.; Schusseler, T.; Yamamoto, Y. Angew. Chem., Int. Ed.
2005, 44, 7718–7721. (e) Nakao, Y.; Ebata, S.; Yada, A.; Hiyama, T.;
Ikawa, M.; Ogoshi, S. J. Am. Chem. Soc. 2008, 130, 12874–12875. For
€
catalyzed: (f) Jia, Y.-X.; Kundig, E. P. Angew. Chem., Int. Ed. 2009, 48,
1636–1639. (g) Perry, A.; Taylor, R. J. K. Chem. Commun. 2009, 3249–
3251. (h) Klein, J. E. M. N.; Perry, A.; Pugh, D. S.; Taylor, R. J. K. Org.
Lett. 2010, 12, 3446–3449.
(14) For related palladium-catalyzed CꢀN bond formation: (a)
Wasa, M.; Yu, J.-Q. J. Am. Chem. Soc. 2008, 130, 14058–14059. (b)
Miura, T.; Ito, Y.; Murakami, M. Chem. Lett. 2009, 38, 328–329.
(15) (a) Bonnaterre, F.; Bois-Choussy, M.; Zhu, J. Org. Lett. 2006, 8,
4351–4354. (b) Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J. Org. Lett.
2006, 8, 4927–4930. (c) Pinto, A.; Jia, Y.; Neuville, L.; Zhu, J. Chem.;
Eur. J. 2007, 13, 961–967. (d) Pinto, A.; Neuville, L.; Zhu, J. Angew.
Chem., Int. Ed. 2007, 46, 3291–3295. (e) Jaegli, S.; Vors, J.-P.; Neuville,
L.; Zhu, J. Synlett. 2009, 2997–2999. (f) Pinto, A.; Neuville, L.; Zhu, J.
Tetrahedron Lett. 2009, 50, 3602–3605. (g) Erb, W.; Neuville, L.; Zhu, J.
J. Org. Chem. 2009, 74, 3109–3115. (h) Jaegli, S.; Erb, W.; Retailleau, P.;
Vors, J.-P.; Neuville, L.; Zhu, J. Chem.;Eur. J. 2010, 16, 5863–5867.
(16) Jaegli, S.; Dufour, J.; Wei, H.-L.; Piou, T.; Duan, X.-H.; Vors,
J.-P.; Neuville, L.; Zhu, J. Org. Lett. 2010, 12, 4498–4501.
(17) Barluenga, J.; Gonzalez, J. M.; Campos, P. J.; Asensio, G.
Angew. Chem., Int. Ed. 1985, 24, 319–320.
ꢀ
´
(18) (a) Concepcıon, J. I.; Francisco, C. G.; Hernandez, R.; Salazar,
€
R-arylation, see:(f) Kundig, E. P.; Seidel, T. M.; Jia, Y.-X.; Bernardinelli,
G. Angew. Chem., Int. Ed. 2007, 46, 8484–8487. (g) Jia, Y.-X.; Katayev,
€
D.; Kundig, E. P. Chem. Commun. 2010, 46, 130–132. For a related
ꢀ
J. A.; Suarez, E. Tetrahedron Lett. 1984, 25, 1953–1956. (b) Courtneidge,
palladium-catalyzed intramolecular cyanoamidation, see: (h) Kobayashi,
Y.; Kamisaki, H.; Yanada, R.; Takemoto, Y. Org. Lett. 2006, 8, 2711–
2713. (i) Reddy, V. J.; Douglas, C. J. Tetrahedron 2010, 66, 4719–4729 and
reference cited therein.
(12) For recent reviews dealing with CꢀH activation, see: (a)
Campeau, L.-C.; Fagnou, K. Chem. Commun. 2006,1253–1264. (b) Alberico,
D.;Scott,M.E.;Lautens,M.Chem. Rev. 2007,107, 174–238. (c) Giri, R.; Shi,
B.-F.; Engle, K. E.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242–
3272. (d) Jazzar, R.; Hitch, J.; Renaudat, A.; Sofack-Kreutzer, J.; Baudoin,
O. Chem.;Eur. J. 2010,16, 2654–2672. (e) Lyons, T. W.; Sanford, M. S. Org.
Lett. 2010, 110, 1147–1169.
ꢀ
J. L.; Lusztyk, J.; Page, D. Tetrahedron Lett. 1994, 35, 1003–1006. For
recent examples using PhI(OAc)2/I2 in palladium-catalyzed oxidative
functionalization, see: (c) Wang, D.-H.; Hao, X.-S.; Wu, D.-F.; Yu,
J.-Q. Org. Lett. 2006, 8, 3387–3390. (d) Mei, T. S.; Giri, R.; Maugel, N.; Yu,
J.-Q. Angew. Chem., Int. Ed. 2008, 47, 5215–5219. (e) Li, J.-J.; Mei, T.-S.;
Yu, J.-Q. Angew. Chem., Int. Ed. 2008, 47, 6452–6455. (f) Vickers, C. J.;
Mei, T.-S.; Yu, J.-Q. Org. Lett. 2010, 12, 2511–2513. (g) Mei, T.-S.;
Wang, D.-H.; Yu, J.-Q. Org. Lett. 2010, 12, 3140–314. For a review, see:
(i) Giri, R.; Yu, J.-Q. In e-EROS, Encyclopedia of Reagents for Organic
Synthesis; John Wiley & Sons, Ltd.: 2008; DOI: 10.1002/047084289X.
rn00915.
Org. Lett., Vol. 13, No. 9, 2011
2245