ORGANIC
LETTERS
2011
Vol. 13, No. 9
2200–2203
Organocatalytic Synthesis of Multiple
Substituted Bicyclo[4.4.0]Decalin System
Shaik Anwar, Hui-Ju Chang, and Kwunmin Chen*
Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan 116,
ROC
Received February 17, 2011
ABSTRACT
An efficient and unprecedented organocatalytic reaction of γ-nitroketones with R,β-unsaturated aldehydes to give polyfunctionalized [4.4.0]
bicyclic skeletons was developed. The diphenylprolinol silyl ether mediated nitro-Michael/Aldol reaction afforded the hexa-substituted decalin
carboaldehydes with excellent diastereo- and enantioselectivity (up to >99:1 dr and >99% ee) via a formal [4 þ 2] carbocyclization process.
Polyfunctional cyclic carbon frameworks are typical
structural features of many diterpenoid natural products
and pharmaceutical drugs.1 Chiral bicyclic decalin struc-
tures are important intermediates for the synthesis of
biologically active compounds.2 Over the past decade,
organocatalysis has emerged as a powerful alternative for
the synthesis of functionalized monocyclic3 (five3aꢀe and
six3fꢀm membered), bicyclic,4 tricyclic,5 and spirocyclic6
systems under metal-free conditions. The development of
facile routes to nontrivial core structures via a cascade
sequence continues to challenge the synthetic community.7
Following the discovery of the HajosꢀParrishꢀEderꢀ
SauerꢀWiechert reaction in the 1970s,8 proline and its
derivatives have now been found to catalyze the intra-/
inter-aldolization process for the synthesis of many chiral
(1) (a) Piers, S.; Romero, M. A. Tetrahedron 1993, 49, 5791. (b)
Wilson, R. M.; Jen, W. S.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005,
127, 11616. (c) Lambert, T. H.; Danishefsky, S. J. J. Am. Chem. Soc.
€
2006, 128, 426. (d) de Figueiredo, R. M.; Voith, M.; Frohlich, R.;
Christmann, M. Synlett 2007, 391. (e) Jacobs, W. C.; Christmann, M.
Synlett 2008, 247.
(2) (a) Singh, V.; Iyer, S. R.; Pal, S. Tetrahedron 2005, 61, 9197. (b)
Varner, M. A.; Grossman, R. B. Tetrahedron 1999, 55, 13867. (c)
Tokoroyama, T. Synthesis 2000, 611. (d) Merritt, A. T.; Ley, S. V.
Nat. Prod. Rep 1992, 9, 243.
(5) For selected references on tricyclic system, see: (a) Rendler, S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 5027. (b) Enders, D.;
Huttl, M. R. M.; Runsink, J.; Raabe, G.; Wendt, B. Angew. Chem., Int.
Ed. 2007, 46, 467.
(6) For selected references on spirocycles, see: (a) Jiang, K.; Jia, Z.-J.;
Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766. (b) Jiang, K.; Jia,
Z.-J.; Chen, S.; Wu, L.; Chen, Y.-C. Chem.;Eur. J. 2010, 16, 2852. (c)
Bencivenni, G.; Wu, L.-Y.; Mazzanti, A.; Giannichi, B.; Pesciaioli, F.;
Song, M.-P.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009, 48,
7200.
(7) (a) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem.,
Int. Ed. 2006, 45, 7134. (b) Tietze, L. F.; Brasche, G.; Gerocke, K.
Domino Reactions in Organic Synthesis; Wiley-VCH: Weinheim, 2006.
(8) For discussion, see: (a) List, B.; Hoang, L.; Martin, H. J. Proc.
Natl. Acad. Sci. U.S.A. 2004, 101, 5839. (b) Barbas, C. F., III. Angew.
Chem., Int. Ed. 2008, 47, 42.
(3) For selected references on monocyclic ring system formation, see:
(a) Hong, B.-C.; Dange, N. S.; Hsu, C.-S.; Liao, J.-H. Org. Lett. 2010, 12,
4812. (b) Wang, J.; Li, H.; Xie, H.; Zu, L.; Shen, X.; Wang, W. Angew.
Chem., Int. Ed. 2007, 46, 9050. (c) Lathrop, S. P.; Rovis, T. J. Am. Chem.
Soc. 2009, 131, 13628. (d) Ma, A.; Ma, D. Org. Lett. 2010, 12, 3634. (e)
Zhao, G.-L.; Ibrahem, I.; Dziedzic, P.; Sun, J. C.; Cordova, A. Chem.
ꢀEur. J. 2008, 14, 10007. (f) Enders, D.; Wang, C.; Mukanova, M.;
Greb, A. Chem. Commun. 2010, 46, 2447. (g) Penon, O.; Carlone, A.;
Mazzanti, A.; Locatelli, M.; Sambri, L.; Bartoli, G.; Melchiorre, P.
Chem.;Eur. J. 2008, 14, 4788. (h) Zhang, F.-L.; Xu, A.-W.; Gong, Y.-F.
Wei, M.-H.; Yang, X.-L. Chem.;Eur. J. 2009, 15, 6815. (i) Wang, Y.;
Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F.
Chem.;Eur. J. 2010, 16, 3922. (j) Enders, D.; Huttl, M. R. M.; Grondal,
C.; Raabe, G. Nature 2006, 441, 861. (k) Urushima, T.; Sakamoto, D.;
Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588. (l) Han, B.; Xiao,
Y.-C.; He, Z.-Q.; Chen, Y.-C. Org. Lett. 2009, 11, 4660. (m) Hong, B.-C.;
Nimje, R. Y.; Sadani, A. A.; Liao, J.-H. Org. Lett. 2008, 10, 2345.
(4) For selected references on bicycles, see: (a) Rueping, M.; Kuenkel,
€€
(9) (a) Kanger, T.; Kriis, K.; Laars, M.; Kailas, T.; Muurisepp, A.-M.;
€
Pehk, T.; Lopp, M. J. Org. Chem. 2007, 72, 5168. (b) Rottger, S.;
€
A.; Frolich, R. Chem.ꢀEur. J. 2010, 16, 4173. (b) Holub, N.; Jiang, H.;
Waldmann, H. Eur. J. Org. Chem. 2006, 2093. (c) Hong, B.-C.; Nimje,
R. Y.; Liao, J.-H. Org. Biomol. Chem. 2009, 7, 3095. (d) Ramachary, D. B.;
Sakthidevi, R. Org. Biomol. Chem. 2008, 6, 2488. (e) Davies, S. G.; Russell,
A. J.; Sheppard, R. L.; Smith, A. D.; Thomson, J. E. Org. Biomol. Chem.
2007, 5, 3190.
Paixio, M. W.; Tiberi, C.; Jørgensen, K. A. Chem.;Eur. J. 2010, 16,
4337. (c) He, Z.-Q.; Han, B.; Li, R.; Wu, L.; Chen, Y.-C. Org. Biomol.
Chem. 2010, 8, 755. (d) Renzi, P.; Overgaard, J.; Bella, M. Org. Biomol.
Chem. 2010, 8, 980.
r
10.1021/ol200424x
Published on Web 04/08/2011
2011 American Chemical Society