Journal of the American Chemical Society
Communication
J.; Tillack, A.; Jiao, H. Angew. Chem., Int. Ed. 2004, 43, 3368−3398.
(b) Hintermann, L. Top. Organomet. Chem. 2010, 123−155.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and analytical data. This material is
■
S
(12) Substrate-controlled aldehyde-selective Wacker oxidations have
been coupled to catalytic reductions to enable both formal anti-
Markovnikov hydration and hydroamination processes: (a) Dong, G.;
Teo, P.; Wickens, Z. K.; Grubbs, R. H. Science 2011, 333, 1609−1612.
(b) Bronner, S. M.; Grubbs, R. H. Chem. Sci. 2014, 5, 101−106.
(13) For selected examples of progress in anti-Markovnikov
functionalization: (a) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.;
Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 5608−5609.
(b) Utsunomiya, M.; Hartwig, J. F. J. Am. Chem. Soc. 2004, 126,
2702−2703. (c) Hamilton, D. S.; Nicewicz, D. A. J. Am. Chem. Soc.
2012, 134, 18577−18580. (d) Nguyen, T. M.; Nicewicz, D. A. J. Am.
Chem. Soc. 2013, 135, 9588−9591. (e) Zhu, S.; Niljianskul, N.;
Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746−15749.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge financial support from the Gordon and Betty
Moore Foundation, the NSF, and the Swiss National Science
Foundation for a fellowship to B.M.
(14) For selected examples of substrate-controlled aldehyde
selectivity: (a) Nokami, J.; Ogawa, H.; Miyamoto, S.; Mandai, T.;
Wakabayashi, S.; Tsuji, J. Tetrahedron Lett. 1988, 29, 5181−5184.
(b) Meulemans, T. M.; Kiers, N. H.; Feringa, B. L.; Leeuwen, P. W. V.
Tetrahedron Lett. 1994, 35, 455−458. (c) Kang, S.-K.; Jung, K.-Y.;
Chung, J.-U.; Namkoong, E.-Y.; Kim, T.-H. J. Org. Chem. 1995, 60,
4678−4679. (d) Reference 3. (e) Weiner, B.; Baeza, A.; Jerphagnon,
T.; Feringa, B. J. Am. Chem. Soc. 2009, 131, 9473−9474. (f) Dong, J. J.;
REFERENCES
■
(1) (a) Smidt, J.; Hafner, W.; Sedlmeier, J.; Jira, R.; Ruttinger, R.
̈
Angew. Chem. 1959, 71, 176−182. (b) Tsuji, J. Synthesis 1984, 369−
384. (c) Tsuji, J. Palladium Reagents and Catalysts: New Perspectives for
the 21st Century, 2nd ed.; Wiley: 2004. (d) Jira, R. Angew. Chem., Int.
Ed. 2009, 48, 9034−9037.
(2) Sigman, M. S.; Werner, E. W. Acc. Chem. Res. 2012, 45, 874−884.
(3) Muzart, J. Tetrahedron 2007, 63, 7505−7521.
(4) (a) Michel, B. W.; Camelio, A. M.; Cornell, C. N.; Sigman, M. S.
J. Am. Chem. Soc. 2009, 131, 6076−6077. (b) Michel, B. W.;
McCombs, J. R.; Winkler, A.; Sigman, M. S. Angew. Chem., Int. Ed.
2010, 49, 7312−7315. (c) Michel, B. W.; Steffens, L. D.; Sigman, M. S.
J. Am. Chem. Soc. 2011, 133, 8317−8325. (d) McCombs, J. R.; Michel,
B. W.; Sigman, M. S. J. Org. Chem. 2011, 76, 3609−3613.
́
Fananas-Mastral, M.; Alsters, P. L.; Browne, W. R.; Feringa, B. L.
̃
Angew. Chem., Int. Ed. 2013, 52, 5561−5565.
(15) Styrene derivatives can also offer substrate-derived aldehyde
selectivity: (a) Wright, J. A.; Gaunt, M. J.; Spencer, J. B. Chem.Eur. J.
2006, 12, 949−955. (b) Yamamoto, M.; Nakaoka, S.; Ura, Y.; Kataoka,
Y. Chem. Commun. 2012, 48, 1165−1167. (c) Teo, P.; Wickens, Z. K.;
Dong, G.; Grubbs, R. H. Org. Lett. 2012, 14, 3237−3239.
(16) For a review highlighting the power of catalyst-controlled
processes: Mahatthananchai, J.; Dumas, A. M.; Bode, J. W. Angew.
Chem., Int. Ed. 2012, 51, 10954−10990.
(17) Heiligenstein, J. H.; Tollefson, G. D. US5658590 A, 1997.
(5) Internal alkenes can now be oxidized efficiently: (a) Mitsudome,
T.; Mizumoto, K.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Angew.
Chem., Int. Ed. 2010, 49, 1238−1240. (b) DeLuca, R. J.; Edwards, J. L.;
Steffens, L. D.; Michel, B. W.; Qiao, X.; Zhu, C.; Cook, S. P.; Sigman,
M. S. J. Org. Chem. 2013, 78, 1682−1686. (c) Morandi, B.; Wickens, Z.
K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2013, 52, 2944−2948.
(d) Mitsudome, T.; Yoshida, S.; Mizugaki, T.; Jitsukawa, K.; Kaneda,
K. Angew. Chem., Int. Ed. 2013, 52, 5961−5964. (e) Mitsudome, T.;
Yoshida, S.; Tsubomoto, Y.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K.
Tetrahedron Lett. 2013, 54, 1596−1598. (f) Morandi, B.; Wickens, Z.
K.; Grubbs, R. H. Angew. Chem., Int. Ed. 2013, 52, 9751−9754.
(6) Oxygen can now be used as the solo oxidant: (a) Mitsudome, T.;
Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda,
K. Angew. Chem., Int. Ed. 2006, 45, 481−485. (b) Cornell, C. N.;
Sigman, M. S. Inorg. Chem. 2007, 46, 1903−1909. (c) Gligorich, K. M.;
Sigman, M. S. Chem. Commun. 2009, 3854−3867. (d) Campbell, A.
N.; Stahl, S. S. Acc. Chem. Res. 2012, 45, 851−863.
(7) (a) Feringa, B. L. Chem. Commun. 1986, 909. (b) Wenzel, T. T.
Chem. Commun. 1993, 862−864. (c) Ogura, T.; Kamimura, R.; Shiga,
A.; Hosokawa, T. Bull. Chem. Soc. Jpn. 2005, 78, 1555−1557.
(d) Wickens, Z. K.; Morandi, B.; Grubbs, R. H. Angew. Chem., Int. Ed.
2013, 52, 11257−11260.
(8) For a general reference regarding the synthesis of enantioen-
riched building blocks: Carreira, E. M.; Kvaerno, L. Classics in
Stereoselective Synthesis, 1st ed.; Wiley-VCH: 2009.
́
(18) Lopez, F.; Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2003,
125, 3426−3427.
(19) Mei, T.-S.; Werner, E. W.; Burckle, A. J.; Sigman, M. S. J. Am.
Chem. Soc. 2013, 135, 6830−6833.
(20) In our study of Wacker-type oxidations of internal alkenes (ref
5f), we found that alkenes bearing electron-deficient benzoate
derivatives in the allylic position were oxidized significantly more
slowly than electron-rich benzoate derivatives. In that case, significant
cationic character in the transition state was suggested.
(21) For a thorough discussion of the traditional, polar Wacker
mechanism: Keith, J. A.; Henry, P. M. Angew. Chem., Int. Ed. 2009, 48,
9038−9049.
(22) Zard, S. Z. Radical Reactions in Organic Synthesis; Oxford
University Press Inc.: New York, 2003.
(23) Nitrite salts are known to readily release the nitrogen dioxide
radical: Thiemann, M.; Scheibler, E.; Wiegand, K. W. Nitric Acid,
Nitrous Acid, and Nitrogen Oxides; Ullmann’s Encyclopedia of
Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2005.
(24) In light of ref 23, the 18O-labeling experiment conducted in ref
7d that indicated that the nitrite salt is the oxygen source in the
aldehyde product provided preliminary support to a radical mechanism
to explain the regioselectivity.
(9) (a) Eilbracht, P.; Barfacker, L.; Buss, C.; Hollmann, C.; Kitsos-
̈
Rzychon, B. E.; Kranemann, C. L.; Rische, T.; Roggenbuck, R.;
Schmidt, A. Chem. Rev. 1999, 99, 3329−3366. (b) Smith, M. B.;
March, J. March’s Advanced Organic Chemistry, 5 ed.; Wiley: New York,
2001. (c) Reference 8. (d) Wang, C.; Pettman, A.; Basca, J.; Xiao, J.
Angew. Chem., Int. Ed. 2010, 49, 7548−7552.
(10) Anti-Markovnikov functionalization of alkenes was highlighted
as a top challenge in catalysis two decades ago: Haggin, J. Chem. Eng.
News 1993, 71, 23−27.
(11) For reviews highlighting the need for catalyst-controlled anti-
Markovnikov functionalization methodologies: (a) Beller, M.; Seayad,
D
dx.doi.org/10.1021/ja411749k | J. Am. Chem. Soc. XXXX, XXX, XXX−XXX