On the other hand, asymmetric cascades or domino
reactions, which combine two or more reactions together,
are highly efficient pathways that allow the synthesis of
complex molecules from simple substrates.7 Different from
a stepwise strategy toward a target molecule, this process
represents an advance of synthetic efficiency, operational
simplicity, and atom economy. As part of our recent research
program to develop new cascade methodologies,8 we envi-
saged that the enantioselective nucleophilic addition/diaster-
eoselective protonation between prochiral trisubstituted
nucleophiles and R-aminoacrylates would probably be a
potential method to achieve Cγ-tetrasubstituted R-amino acid
derivatives.9ꢀ11 However, there are two problems that possi-
bly counteract the success of this process, including: (1) the
steric hindrance for the formation of the quaternary stereo-
center and (2) the difficulty in diastereoselectivity control
during asymmetric protonation. Owing to the significance of
Cγ-tetrasubstituted R-amino acid derivatives and in continua-
tion from our recent investigation on unnatural amino
acids,12 we present herein an enantioselective nucleophilic
addition/diastereoselective protonation cascade between a
wide range of C(3)-substituted oxindoles13 and ethyl 2-phtha-
limidoacrylate, affording Cγ-tetrasubstituted R-amino acid
derivatives bearing 1,3-nonadjacent stereocenters in one pot.
By giving high stereoselectivities (up to 94:6 dr and >99% ee)
with easily accessible thiourea as the catalyst under opera-
tionally simple conditions, the current reaction provides a
complementary method to a series of unnatural amino acids
with excellent structural diversity. Notably, the procedure
allows the construction of the opposite enantiomers by
changing the cinchonidine-derived thiourea catalyst to its
cinchonine analogue.
In view of the fact that the reaction of 3-phenyloxindole
1a and ethyl 2-phthalimidoacrylate 2 catalyzed by tetra-
methylguanidine (TMG) proceeded very quickly at room
temperature to give the racemic compounds, our investiga-
tion started with the screening of various kinds of chiral
tertiary amine catalysts. Although only trace amounts of the
Michael adduct were obtained using Takemoto’s catalyst or
the cinchonine-derived catalyst II after 5 days on the basis of
TLC analysis (Table 1, entries 1 and 2), the chiral multi-
hydrogen bonding catalyst III could give the desired product
in moderate yield with moderate stereoselectivities (Table 1,
entry 3). Encouraged by these results, we surveyed the more
basic cinchona-derived thioureas for this reaction.
ꢀ
(3) Forareview, see:(a)Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107,
4584. For recent examples, see: (b) Arai, T.; Mishiro, A.; Yokoyama, N.;
Suzuki, K.; Sato, H. J. Am. Chem. Soc. 2010, 132, 5338. (c) Weber, M.;
Jautze, S.; Frey, W.; Peters, R. J. Am. Chem. Soc. 2010, 132, 12222. (d) Alba,
ꢀ
A.-N. R.; Companyo, X.; Valero, G.; Moyano, A.; Rios, R. Chem.;Eur. J.
2010, 16, 5354. (e) Yoshino, T.; Morimoto, H.; Lu, G.; Matsunaga, S.;
Shibasaki, M. J. Am. Chem. Soc. 2009,131, 17082. (f) Uraguchi, D.; Ueki, Y.;
Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088. (g) Moriyama, K.; Sakai, H.;
Kawabata, T. Org. Lett. 2008, 10, 3883.
(4) For recent selected examples, see: (a) Zhang, Q.; Cheng, M.; Hu, X.-
Y.; Li, B.-G.; Ji, J.-X. J. Am. Chem. Soc. 2010, 132, 7256. (b) Yamazaki, S.;
Takebayashi, M.; Miyazaki, K. J. Org. Chem. 2010, 75, 1188. (c) Zuend, S. J.;
Coughlin, M. P.; Lalonde, M. P.; Jacobsen, E. N. Nature 2009, 461, 968.
ꢀ
(d) Fustero, S.; Rosello, M. S.; Rodrigo, V.; Cervera, J. F. S.; Piera, J.;
Fuentes, A. S.; Pozo, C. D. Chem.;Eur. J. 2008, 14, 7019. (e) Pan, S. C.;
Zhou, J.; List, B. Angew. Chem., Int. Ed. 2007, 46, 612.
(5) For pioneering studies, see: (a) Li, X.; Luo, S.-Z.; Cheng, J.-P.
Chem.;Eur. J. 2010, 16, 14290. (b) Wang, B.-M.; Wu, F.-H.; Wang, Y.;
Liu, X.-F.; Deng, L. J. Am. Chem. Soc. 2007, 129, 768. (c) Wang, Y.; Liu,
X.-F.; Deng, L. J. Am. Chem. Soc. 2006, 128, 3928.
(6) Repka, L. M.; Ni, J.; Reisman, S. E. J. Am. Chem. Soc. 2010, 132,
14418.
(7) (a) Tietze, L. F., Gordon, B., Kersten, G. M., Eds. Domino Reactions
in Organic Synthesis; Wiley-VCH: Weinheim, 2006. For selected reviews on
cascade (domino) reactions, see: (b) Hussian, M. M.; Walsh, P. J. Acc. Chem. Res.
2008, 41, 883. (c) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239.
€
(d) Enders, D.; Grondal, C.; Huttl, M. R. M. Angew. Chem., Int. Ed. 2007,
46, 1570. (e) Guo, H.-C.; Ma, J.-A. Angew. Chem., Int. Ed. 2006, 45, 354.
(f) Pellissier, H. Tetrahedron 2006, 62, 2143. (g) Nicolaou, K. C.; Edmonds,
D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134.
As shown in Table 1, IV was found to be the best catalyst
to give the Cγ-tetrasubstituted R-amino acid derivative 3a
with good stereoselectivity and yield after 10 h at room
temperature (Table 1, entry 4). These results indicated that
a cinchona alkaloid proved suitably basic to enolize the
3-phenyloxindole; the thiourea moiety was indispensable to
activate the ethyl 2-phthalimidoacrylate. Significantly, sim-
ply by changing catalyst from cinchonidine-derived thiourea
to its cinchonine analogue, the opposite enantiomer could
be produced with even slightly better diastereoselectivity
(Table 1, entry 5, 94:6 dr, 93% ee). Further optimization of
(8) (a) Wang, X.-F.; Hua, Q.-L.; Cheng, Y.; An, X.-L.; Yang, Q.-Q.;
Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2010, 49, 8379. (b) Wang,
X.-F.;Chen, J.-R.;Cao, Y.-J.;Cheng, H.-G.;Xiao, W.-J.Org. Lett. 2010, 12,
1140. (c) Lu, L.-Q.; Li, F.; An, J.; Zhang, J.-J.; An, X.-L.; Hua, Q.-L.; Xiao,
W.-J. Angew. Chem., Int. Ed. 2009, 48, 9542. (d) Lu, L.-Q.; Cao, Y.-J.; Liu,
X.-P.; An, J.; Yao, C.-J.; Ming, Z.-H.; Xiao, W.-J. J. Am. Chem. Soc. 2008,
130, 6946. (e) Chen, J.-R.; Li, C.-F.; An, X.-L.; Zhang, J.-J.; Zhu, X.-Y.;
Xiao, W.-J. Angew. Chem., Int. Ed. 2008, 47, 2489.
(9) For organocatalyzed conjugate addition/asymmetric protonations,
see: (a) Leow, D.; Lin, S.; Chittimalla, S. K.; Fu, X.; Tan, C.-H. Angew.
Chem., Int. Ed. 2008, 47, 5641. (b) Rueping, M.; Theissmann, T.; Raja, S.;
Bats, J. W. Adv. Synth. Catal. 2008, 350, 1001. (c) Rueping, M.; Antonchick,
A. P. Angew. Chem., Int. Ed. 2007, 46, 4562. (d) Rueping, M.; Antonchick,
A. P.; Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683.
(10) For metal-catalyzed conjugate addition/asymmetric protonations,
see: (a) Morita, M.; Drouin, L.; Motoki, R.; Kimura, Y.; Fujimori, I.; Kanai,
M.; Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 3858. (b) Sibi, M. P.;
Coulomb, J.; Stanley, L. M. Angew. Chem., Int. Ed. 2008, 47, 9913.
(c) Navarre, L.; Martinez, R.; Genet, J.-P.; Darses, S. J. Am. Chem. Soc.
2008, 130, 6159. (d) Sibi, M. P.; Tatamidani, H.; Patil, K. Org. Lett. 2005, 7,
2571. (e) Sadow, A. D.; Haller, I.; Fadini, L.; Togni, A. J. Am. Chem. Soc.
2004, 126, 14704. (f) Moss, R. J.; Wadsworth, K. J.; Chapman, C. J.; Frost,
C. G. Chem. Commun. 2004, 1984. (g) Hamashima, Y.; Somei, H.; Shimura,
Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861.
(11) For reviews on enantioselective protonation, see: (a) Mohr, J. T.;
Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359. (b) Duhamel, L.;
Duhamel, P.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2004, 15, 3653. For
selected examples of catalytic asymmetric protonation, see: (c) Cheon, C. H.;
Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 9246. (d) Poisson, T.; Dalla, V.;
Marsais, F.; Dupas, G.; Oudeyer, S.; Levacher, V. Angew. Chem., Int. Ed.
2007, 46, 7090. (e) Yanagisawa, A.; Touge, T.; Arai, T. Angew. Chem., Int.
Ed. 2005, 44, 1546. (f) Sugiura, M.; Nakai, T. Angew. Chem., Int. Ed. 1997,
36, 2366. (g) Fehr, C.; Stempf, I.; Galindo, J. Angew. Chem., Int. Ed. 1993, 32,
1044.
(12) (a) Zhang, F.-G.; Yang, Q.-Q.; Xuan, J.; Lu, H.-H.; Duan, S.-W.;
Chen, J.-R.; Xiao, W.-J. Org. Lett. 2010, 12, 5636. (b) Lu, H.-H.; Zhang, F.-
G.; Meng, X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946.
(13) For selected examples of the catalytic asymmetric reactions with
3-substituted oxindole, see: (a) Zhou, F.; Liu, Y.; Zhou, J. Adv. Synth.
Catal. 2010, 352, 1381. (b) Mouri, S.; Chen, Z.; Mitsunuma, H.;
Furutachi, M.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010,
132, 1255. (c) Liao, Y.-H.; Liu, X.-L.; Wu, Z.-J.; Cun, L.-F.; Zhang
X.-M.; Yuan, W.-C. Org. Lett. 2010, 12, 2896. (d) Bui, T.; Syed, S.;
Barbas, C. F. J. Am. Chem. Soc. 2009, 131, 8758. (e) Jiang, K.; Peng, J.;
Cui, H.-L.; Chen, Y.-C. Chem. Commun. 2009, 3955. (f) Taylor, A. M.;
Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 9900.
(g) He, R.; Ding, C.; Maruoka, K. Angew. Chem., Int. Ed. 2009, 48, 4559.
(h) Chen, X.-H.; Wei, Q.; Luo, S.-W.; Xiao, H.; Gong, L.-Z. J. Am.
Chem. Soc. 2009, 131, 13819. (i) Ishimaru, T.; Shibata, N.; Horikawa, T.;
Yasuda, N.; Nakamura, S.; Toru, T.; Shiro, M. Angew. Chem., Int. Ed.
2008, 47, 4157. (j) Trost, B. M.; Frederiksen, M. U. Angew. Chem., Int.
Ed. 2005, 44, 308. (k) Hamashima, Y.; Suzuki, T.; Takano, H.; Shimura,
Y.; Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164.
Org. Lett., Vol. 13, No. 9, 2011
2291