ORGANIC
LETTERS
2011
Vol. 13, No. 9
2464–2467
A Dual-Catalysis/Anion-Binding Approach
to the Kinetic Resolution of Allylic Amines
Eric G. Klauber, Nisha Mittal, Tejas K. Shah, and Daniel Seidel*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New
Jersey, Piscataway, New Jersey 08854, United States
Received March 16, 2011
ABSTRACT
A dual-catalysis approach enables the small-molecule catalyzed kinetic resolution of allylic amines by acylation. By employing 2 mol % of each
4-(pyrrolidino)pyridine (PPY) and a readily available chiral hydrogen-bonding cocatalyst, the first nonenzymatic kinetic resolution of allylic amines
was accomplished with s factors of up to 20.
Allylic amines are useful building blocks for the synth-
esis of amino acids,1 alkaloids,2 and therapeutic agents.3
Enantioenriched allylic amines4 have been prepared via
aza-Claisen rearrangement,1d,5 allylic amination,1a,c,e,6 vi-
nylation of protected imines,7 and aza-BaylisÀHillman
reaction,8 in addition to other methods.9 Many of these
approaches produce secondary or tertiary allylic amines.
Access to enantioenriched primary allylic amines may be
achieved via kinetic resolution of the corresponding race-
mic amines, but this process has remained elusive. This is
despite considerable efforts that have been devoted to the
kinetic resolution of allylic alcohols.10 Here we report the
kinetic resolution of allylic amines via a dual-catalyst
approach.
(1) (a) Hayashi, T.; Yamamoto, A.; Ito, Y.; Nishioka, E.; Miura, H.;
Yanagi, K. J. Am. Chem. Soc. 1989, 111, 6301. (b) Burgess, K.; Liu,
L. T.; Pal, B. J. Org. Chem. 1993, 58, 4758. (c) Bower, J. F.; Jumnah, R.;
Williams, A. C.; Williams, J. M. J. J. Chem. Soc., Perkin Trans. 1 1997,
1411. (d) Chen, Y. K.; Lurain, A. E.; Walsh, P. J. J. Am. Chem. Soc.
2002, 124, 12225. (e) Gnamm, C.; Franck, G.; Miller, N.; Stork, T.;
Broedner, K.; Helmchen, G. Synthesis 2008, 20, 3331.
(2) (a) Trost, B. M.; Van Vranken, D. L. J. Am. Chem. Soc. 1993, 115,
444. (b) Brosius, A. D.; Overman, L. E.; Schwink, L. J. Am. Chem. Soc.
1999, 121, 700. (c) Krishnan, S.; Bagdanoff, J. T.; Ebner, D. C.;
Ramtohul, Y. K.; Tambar, U. K.; Stoltz, B. M. J. Am. Chem. Soc.
2008, 130, 13745. (d) Suyama, T. L.; Gerwick, W. H. Org. Lett. 2008, 10,
4449.
(3) (a) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew. Chem., Int. Ed.
2008, 47, 6707. (b) Blacker, A. J.; Roy, M.; Hariharan, S.; Upare, A.;
Jagtap, A.; Wankhede, K.; Mishra, S. K.; Dube, D.; Bhise, S.; Vishwasrao,
S.; Kadam, N. Org. Process. Res. Dev. 2010, 14, 1364.
(7) (a) Grossman, R. B.; Davis, W. M.; Buchwald, S. L. J. Am. Chem.
Soc. 1991, 113, 2321. (b) Cogan, D. A.; Liu, G. C.; Ellman, J. Tetra-
hedron 1999, 55, 8883. (c) Denmark, S. E.; Stiff, C. M. J. Org. Chem.
2000, 65, 5875. (d) Patel, S. J.; Jamison, T. F. Angew. Chem., Int. Ed.
2004, 43, 3941. (e) Skucas, E.; Kong, J. R.; Krische, M. J. J. Am. Chem.
Soc. 2007, 129, 7242. (f) Ngai, M. Y.; Barchuk, A.; Krische, M. J. J. Am.
Chem. Soc. 2007, 129, 12644. (g) McLaughlin, M.; Takahashi, M.;
Micalizio, G. C. Angew. Chem., Int. Ed. 2007, 46, 3912. (h) Reynolds,
T. E.; Binkley, M. S.; Scheidt, K. A. Org. Lett. 2008, 10, 5227. (i) Brak,
K.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 3850.
(8) (a) Matsui, K.; Takizawa, S.; Sasai, H. J. Am. Chem. Soc. 2005,
127, 3680. (b) Gausepohl, R.; Buskens, P.; Kleinen, J.; Bruckmann, A.;
Lehmann, C. W.; Klankermayer, J.; Leitner, W. Angew. Chem., Int. Ed.
2006, 45, 3689. (c) Declerck, V.; Martinez, J.; Lamaty, F. Chem. Rev.
2009, 109, 1.
(4) Selected reviews: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev.
1996, 96, 395. (b) Johannsen, M.; Jørgensen, K. A. Chem. Rev. 1998, 98,
1689. (c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (d)
Skucas, E.; Ngai, M.; Komanduri, V.; Krische, M. J. Acc. Chem. Res.
2007, 40, 1394. (e) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010,
1, 427. (f) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
(g) Nugent, T. C.; El-Shazly, M. Adv. Synth. Catal. 2010, 352, 753.
(5) (a) Anderson, C. E.; Overman, L. E. J. Am. Chem. Soc. 2003, 125,
12412. (b) Weiss, M. E.; Fischer, D. F.; Xin, Z. Q.; Jautze, S.; Schweizer,
W. B.; Peters, R. Angew. Chem., Int. Ed. 2006, 45, 5694. (c) Fischer,
D. F.; Barakat, A.; Xin, Z.; Weiss, M. E.; Peters, R. Chem.;Eur. J .
2009, 15, 8722.
(9) (a) Trost, B. M.; Fandrick, D. R.; Brodmann, T.; Stiles, D. T.
Angew. Chem., Int. Ed. 2007, 46, 6123. (b) Jiang, H.; Holub, N.;
Jørgensen, K. A. Proc. Nat. Acad. Sci. U.S.A. 2010, 107, 20630.
(10) (a) Vedejs, E.; Daugulis, O.; Diver, S. T. J. Org. Chem. 1996, 61,
430. (b) Bellemin-Laponnaz, S.; Tweddell, J.; Ruble, J. C.; Breitling,
F. M.; Fu, G. C. Chem. Commun. 2000, 1009. (c) Vedejs, E.; MacKay,
J. A. Org. Lett. 2001, 3, 535. (d) Birman, V. B.; Li, X. M. Org. Lett. 2006,
8, 1351.
(6) For examples, see: (a) Togni, A.; Burckhardt, U.; Gramlich, V.;
Pregosin, P. S.; Salzmann, R. J. Am. Chem. Soc. 1996, 118, 1031. (b)
Ohmura, T.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 15164. (c)
Nagano, T.; Kobayashi, S. J. Am. Chem. Soc. 2009, 131, 4200. (d) Pouy,
M. J.; Stanley, L. M.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 11312.
(e) Vrieze, D. C.; Hoge, G. S.; Hoerter, P. Z.; Van Haitsma, J. T.; Samas,
B. M. Org. Lett. 2009, 11, 3140. (f) Roggen, M.; Carreira, E. M. J. Am.
Chem. Soc. 2010, 132, 11917 and references cited therein.
r
10.1021/ol200712b
Published on Web 04/08/2011
2011 American Chemical Society