The research was supported by the National Science Council,
Taiwan (NSC98-2119-M-005-002-MY3). The authors are
grateful to Professor Fong-Yin Li and Mr Chen-Chang Wu
for useful discussions on theoretical calculations, and the
National Center for High-Performance Computing for
computation facilities.
Notes and references
1 For a leading reference, see: L. F. Tietze, G. Brasche and
K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH
Verlag GmbH & Co. KGaA, Weinheim, 2006.
2 For recent reviews of domino syntheses, see: (a) K. C. Nicolaou,
D. J. Edmonds and P. G. Bulger, Angew. Chem., Int. Ed., 2006, 45,
7134; (b) A. Padwa and S. K. Bur, Tetrahedron, 2007, 63, 5341;
(c) A. K. Lawrence and K. Gademann, Synthesis, 2008, 331;
Fig. 1 Reaction pathway profile of diastereoselective cyclization of 4d.
(d) B. B. Toure and D. G. Hall, Chem. Rev., 2009, 109, 4439.
´
3 L. F. Tietze, Chem. Rev., 1996, 96, 115.
4 P. W. N. M. van Leeuwan and C. Claver, Rhodium Catalyzed
Hydroformylation, Kluwer Academic Publishers, Dordrecht, 2000.
5 For recent reviews of hydroformylation, see: (a) M. Beller,
J. Seayad, A. Tillack and H. Jiao, Angew. Chem., Int. Ed., 2004,
43, 3368; (b) B. Breit, Acc. Chem. Res., 2003, 36, 264; (c) B. Breit
and W. Seiche, Synthesis, 2001, 1.
6 W. N. Speckamp and M. J. Moolenaar, Tetrahedron, 2000, 56,
3817.
7 W.-H. Chiou, G.-H. Lin, C.-C. Hsu, S. J. Chaterpaul and I. Ojima,
Org. Lett., 2009, 11, 2659.
Fig. 2 Reaction pathway profile of diastereoselective cyclization of 4e.
8 (a) E. Billig, A. G. Abatjoglou and D. Bryant, BIPHEPHOS:
6,60-[(3,30-Di-tert-butyl-5,50-di-methoxy-1,10-biphenyl-2,20-diyl)bis-
(oxy)]-bis(dibenzo[d,f][1,3,2]dioxaphosphepin), Union Carbide, US,
1988; (b) G. D. Cuny and S. L. Buchwald, J. Am. Chem. Soc., 1993,
115, 2066.
so that the transition state TSanti in the anti approach is higher
than the reactant Rsyn in the syn approach. It shows both
approaches are allowed, and the anti addition appears as the
major approach, while the syn addition is the minor approach.
Calculation predictions are in good agreement with our experi-
mental results.
9 The ROESY analysis of enol acetate 6b showed a strong correlation
between the phenyl protons d 7.28 (H-20) and the bridgehead proton
d 4.18 (H-8a), and determined as an E arrangement.
10 A large 1H–1H coupling constant of 10.8 Hz was observed in both
peaks of d 3.30 (H-8) and d 3.83 (H-8a), indicating an anti
arrangement between H-8 and H-8a.
Finally, to demonstrate the ability of the novel methodology,
we report a facile synthesis of tashiromine (Scheme 4).12
Tashiromine (10) is a naturally occurring indolizidine alkaloid,
isolated from an Asian deciduous shrub Maackia tashiroi
(Leguminosae).13 Treatment of ketone 7b using Uneyama’s
protocol14 gave ester 9b in 66% yield. Reduction with LiAlH4
afforded tashiromine (10) in 73% yield.
11 Ketones 7a and 7b were able to be achieved by direct base-
catalyzed methanolysis of the crude product without purification,
in 30% (for 7a) and 71% (for 7b) combined yield.
12 For synthesis of tashiromine, see: (a) J. C. Conrad, J. Kong,
B. N. Laforteza and D. W. C. MacMillan, J. Am. Chem. Soc.,
2009, 131, 11640; (b) S. M. Amorde, I. T. Jewett and S. F. Martin,
Tetrahedron, 2009, 3222; (c) M. Pohmakotr, S. Prateeptongkum,
S. Chooprayoon, P. Tuchinda and V. Reutrakul, Tetrahedron,
´
2008, 64, 2339; (d) G. Belanger, R. Larouche-Gauthier, F. d.
r. Menard, M. Nantel and F. Barabe, J. Org. Chem., 2006, 71,
´
704; (e) R. K. Dieter, N. Chen and R. T. Watson, Tetrahedron,
2005, 61, 3221; (f) A. D. McElhinney and S. P. Marsden, Synlett,
2005, 16, 2528; (g) M. G. Banwell, D. A. S. Beck and J. A. Smith,
Org. Biomol. Chem., 2004, 2, 157; (h) R. K. Dieter and
R. T. Watson, Tetrahedron Lett., 2002, 43, 7725; (i) R. W. Bates
and J. Boonsombat, J. Chem. Soc., Perkin Trans. 1, 2001, 654;
(j) O. David, C. Bellec, M.-C. Fargeau-Bellassoued and
G. Lhommet, Heterocycles, 2001, 55, 1689; (k) S.-H. Kim,
S.-I. Kim, S. Lai and J. K. Cha, J. Org. Chem., 1999, 64, 6771;
(l) O. David, J. r. m. Blot, C. Bellec, M.-C. Fargeau-Bellassoued,
Scheme 4 Synthesis of tashiromine.
G. Haviari, J.-P. Celerier, G. Lhommet, J.-C. Gramain and
´ ´
D. Gardette, J. Org. Chem., 1999, 64, 3122; (m) D.-C. Ha,
S.-H. Park, K.-S. Choi and C.-S. Yun, Bull. Korean Chem. Soc.,
1998, 19, 728; (n) B. P. Branchaud and J. L. Gage, Tetrahedron
Lett., 1997, 38, 7007–7010; (o) K. Paulvannan and J. R. Stille,
J. Org. Chem., 1994, 59, 1613; (p) A. L. J. Beckwith and
S. W. Westwood, Tetrahedron, 1989, 45, 5269.
In conclusion, a novel reaction, alkyne-mediated domino
hydroformylation/double cyclization, has been developed for
rapid preparation of indolizidine type alkaloids. The diastereo-
selectivity is rationalized in terms of the relative stability in the
potential energy profile. We used the novel methodology to
synthesize tashiromine in 33% yield over 4 steps. Extension of
this methodology toward other natural products of interest is
currently underway and will be reported shortly.
13 S. Ohmiya, H. Kubo, H. Otomasu, K. Saito and I. Murakoshi,
Heterocycles, 1990, 30, 537.
14 S. Kobayashi, H. Tanaka, H. Amii and K. Uneyama, Tetrahedron,
2003, 59, 1547.
c
3564 Chem. Commun., 2011, 47, 3562–3564
This journal is The Royal Society of Chemistry 2011