Rakotomalala et al.
301
1
(M + 1). H NMR (400 MHz, CDCl3, ppm) dH: 8.80 (s, 2H),
Supplementary data
8.36 (d, J = 4.8 Hz, 2H), 8.15 (m, 2H), 8.09 (d, J = 7.8 Hz,
2H), 7.87 (dt, J1 = 1.7, J2 = 7.7 Hz, 2H), 7.61 (m, 2H), 7.26
(m, 4H).
Supplementary data (UV–vis absorption spectra of PhB
with ht-di-PhB and spectra showing the progress of the
thermal dissociation experiment) for this article are available
on the journal Web site (canjchem.nrc.ca). CCDC 653177
contains the X-ray data in CIF format for this manuscript.
ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge
CB2 1EZ, UK; fax +44 1223 336033; or deposit@ccdc.
cam.ac.uk).
Photochemical experiments
All photodimerization experiments were carried out in
glass tubes in a Rayonet photoreactor fitted with seven
RPR3500A lamps.
For the experiments in which a filter solution was em-
ployed, 3.32 mg PhB was dissolved in 0.75 mL of CH3CN.
The solution was transferred to an NMR tube and immersed
into a test tube filled with a 2.0 mol/L solution of KNO3 in
water. The sample was irradiated in a Rayonet for 150 min.
The solvent was then removed in vacuo and redissolved in a
minimum volume of CDCl3. The 1H NMR sprectrum
showed a 4:1 ratio of dimer to monomer.
Acknowledgement
The authors gratefully acknowledge the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
University of Victoria, Victoria, British Columbia, and Si-
mon Fraser University, Burnaby, British Columbia, for fund-
ing; T.C.S.P. thanks NSERC for a Canada Graduate
Scholarships – Doctoral (CGS-D) scholarship; and M.-K.
Yang and F. Haftbaradaran are acknowledged for carrying
out the microanalysis.
Synthesis of ht-di-PhB
PhB (3.3 mg) was dissolved in spectral grade benzene
(1.5 mL) and deoxygenated. The sample was then irradiated
in a Rayonet fitted with seven 350 nm lamps for 2 h. After
irradiation, a white powder was precipitated on the side of
the glass. The solution was decanted and the white product
on the side of the glass vessel was collected. MALDI-TOF
m/z: 665 (M + 1). UV–vis lmax (nm) (3 (mol/L)/cm): 230
(47 543), 270 (17 967), 308 (23 337), 328 (29 242). IR
(KBr, cm–1) n: 3057, 2959, 2919, 2849, 1389, 1144. 1H
NMR (400 MHz, CDCl3, ppm) dH: 7.23 (m, 16H), 7.14 (m,
8H), 7.03 (m, 4H), 5.05 (s, 4H). 13C NMR (100 MHz,
CDCl3, ppm) dC: 156.3, 148.7, 140.4, 138.8, 129.4, 128.1,
128.0, 126.9, 52.7. (Note: due to the limited solubility of
this compound, we were unable to observe the signals for
quaternary carbons.) Anal. calcd for C48H32N4 (%): C
86.72, H 4.85, N 8.43; found: C 86.61, H 4.98, N 8.15.
References
(1) Fritzsche, J. Bull. Acad. Imp. Sci. St. Petersbourg 1867, 11,
385.
(2) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.; Lapouyade,
R. Chem. Soc. Rev. 2000, 29 (1), 43. doi:10.1039/a801821i.
(3) Bouas-Laurent, H.; Castellan, A.; Desvergne, J.-P.;
Lapouyade, R. Chem. Soc. Rev. 2001, 30 (4), 248. doi:10.
1039/b006013p.
(4) Nakatsuji, S.; Ojima, T.; Akutsu, H.; Yamada, J. J. Org.
Chem. 2002, 67 (3), 916. doi:10.1021/jo010943u.
(5) Ojima, T.; Akutsu, H.; Yamada, J.; Nakatsuji, S. Polyhedron
2001, 20 (11–14), 1335. doi:10.1016/S0277-5387(01)00615-5.
(6) Jones, J. R.; Liotta, C. L.; Collard, D. M.; Schiraldi, D. A.
Macromolecules 2000, 33 (5), 1640. doi:10.1021/ma990041j.
¨
(7) Schafer, C.; Eckel, R.; Ros, R.; Mattay, J.; Anselmetti, D. J.
Thermal dissociation of ht-di-PhB
Am. Chem. Soc. 2007, 129 (6), 1488. doi:10.1021/ja067734h.
(8) McSkimming, G.; Tucker, J. H. R.; Bouas-Laurent, H.;
Desvergne, J. P.; Coles, S. J.; Hursthouse, M. B.; Light, M.
E. Chem. Eur. J. 2002, 8 (15), 3331. doi:10.1002/1521-
3765(20020802)8:15<3331::AID-CHEM3331>3.0.CO;2-C.
(9) De Schryver, F. C.; Anand, L.; Smets, G.; Switten, J. J.
Polym. Sci., Polym. Lett. Ed. 1971, 9 (10), 777.
(10) Matsui, J.; Ochi, Y.; Tamaki, K. Chem. Lett. 2006, 35 (1),
80. doi:10.1246/cl.2006.80.
(11) Yang, C.; Jacob, J.; Mullen, K. Macromolecules 2006, 39
(17), 5696. doi:10.1021/ma060722w.
ht-di-PhB (6.6 mg) was dissolved in 100 mL DMSO in a
100 mL volumetric flask. The solution (20 mL, 1.00 Â
10–5 mol/L ) was transferred into four 25 mL glass vials.
The open vials were then heated in oil baths at 60, 80, 100,
and 150 8C.
Photodissociation of ht-di-PhB
ht-di-PhB (6.6 mg) was used to prepare a 10 mL solution
of 1 Â 10–4 mol/L in acetonitrile using several dilutions.
The solution was transferred to a 1 cm quartz cuvette and
irradiated at 328 nm in the fluorimeter. Dissociation prog-
ress was followed by UV–vis spectroscopy.
(12) Bratschkov, C.; Karpuzova, P.; Mu¨llen, K.; Klapper, M.;
Schopov, I. Polym. Bull. 2001, 46 (5), 345. doi:10.1007/
s002890170041.
(13) Wasserman, H. H.; Scheffer, J. R.; Cooper, L. J. J. Am.
Chem. Soc. 1972, 94 (14), 4991. doi:10.1021/ja00769a034.
(14) Bailey, D.; Williams, V. E. Tetrahedron Lett. 2004, 45 (12),
2511. doi:10.1016/j.tetlet.2004.02.010.
Synthesis of ht-di-PyB
ht-di-PyB was prepared using the method described
above for ht-di-PhB to afford a white solid that precipitated
from the reaction solution. MALDI-TOF m/z: 669 (M + 1).
1H NMR (500 MHz, CDCl3, ppm) dH: 8.43 (d, J = 4.8 Hz,
2H), 7.69–7.63 (m, 2H), 7.45–7.37 (m, 2H), 7.25 (dd, J1 =
5.4, J2 = 3.3 Hz, 2H), 7.21–7.14 (m, 1H), 7.00 (dd, J1 =
5.4, J2 = 3.2 Hz, 2H), 5.16 (s, 2 H). 13C NMR (125 MHz,
CDCl3, ppm) dC: 157.3, 156.9, 149.1, 147.9, 140.0, 136.2,
128.0, 127.3, 124.3, 122.6, 109.7, 52.7.
(15) Bailey, D.; Murphy, J. N.; Williams, V. E. Can. J. Chem.
2006, 84 (4), 659. doi:10.1139/V06-054.
(16) Bowles, D. W.; Anthony, J. E. Org. Lett. 2000, 2 (1), 85.
doi:10.1021/ol991254w.
(17) Lagodzinski, K. Liebigs Ann. Chem. 1905, 342 (1/3), 90.
(18) Bailey, D.; Williams, V. E. Chem. Commun. (Camb.) 2005,
2569. doi:10.1039/b502183a.
Published by NRC Research Press