ACS Catalysis
Page 4 of 11
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures and supplementary data (characteriza-
tion of materials, supplementary results) as addressed in the text
(PDF)
Literature points to three conceivable mechanistic pathways.
The calculations done by Corma et al. on oxidized Au clusters
on CeO2 show that two vicinal gold-activated alkyne mole-
1
2
3
4
5
6
7
8
12c
cules couple together on the gold surface, yielding the homo-
coupling product. The second one is based on homogeneous
gold catalysis works,11c,d suggesting that geminal alkynyl moi-
eties of an AuIII complex reductively eliminate to form the 1,3-
diyne. While Peng and co-workers assume that the required
ACKNOWLEDGMENT
The authors thank Dr. Frank Krumeich from the Electron Micros-
copy Center of ETH Zürich (EMEZ) for the TEM imaging. We
also thank Prof. T. Jung for providing access to the XPS instru-
ment and J. Nowakowski for performing the measurements.
bis(alkynyl)AuIII
compound
originates
from
a
mono(alkynyl)AuIII species by reacting with another alkyne
molecule,11c Corma et al.11d propose that an alkynyl-AuI spe-
cies is oxidized by Selectfluor to form a AuI-AuIII digold com-
plex that gives the bis(alkynyl)AuIII intermediate via
transmetallation. The last scenario, proposed by de Haro and
Nevado31 and adopted by Zhu et al.,11b involves the formation
of a gold-activated alkynyl(phenyl)iodonium salt32 that reacts
with another alkyne molecule to form a vinyl-gold intermedi-
ate that decomposes while producing the 1,3-diyne.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) (a) Stefani, H. A.; Guarezemini, A. S.; Cella, R. Tetrahedron
2010, 66, 7871–7918; (b) Shi, W.; Lei, A. Tetrahedron Lett. 2014, 55,
2763–2772; (c) Asiri, A. M.; Hashmi, A. S. K. Chem. Soc. Rev. 2016,
45, 4471–4503.
(2) Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem., Int. Ed.
2006, 45, 1034–1057.
(3) Kivala, M.; Diederich, F. Pure Appl. Chem. 2008, 80, 411–427.
(4) (a) Liu, J.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109,
5799–5867; (b) Hu, R.; Tang, B. Z. In Multi-Component and
Sequential Reactions in Polymer Synthesis; Theato, P., Ed.; Springer
International Publishing: Cham, 2015; pp. 17–42.
(5) (a) Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem.,
Int. Ed. 2000, 39, 2632–2657; (b) Alami, M.; Hamze, A.; Messaoudi,
S. In Comprehensive Organic Synthesis, 2nd ed.; Knochel, P.;
Molander, G. A., Eds.; Elsevier: Amsterdam, 2014; Vol. 3, pp. 528–
579; (c) Sindhu, K. S.; Anilkumar, G. RSC Adv. 2014, 4, 27867–
27887.
Our catalytic system requires the presence of 1,10-phen (or
a similar chelate such as 2,2′-bipyridine), which can serve to
stabilize gold clusters33 and is a well-known ligand for square-
planar complexes of PdII, PtII, CuI and also AuIII. Together
with the facts that gold sub-nanoparticles are easily oxidized29
and the material contains a significant portion of AuIII, as
shown by XPS measurements, we incline to the notion that the
reaction proceeds via the formation of the bis(alkynyl)AuIII
species stabilized by 1,10-phen and subsequent reductive elim-
ination, giving A. Oxidant PhI(OAc)2 yields the catalytic oxi-
dized gold in the course of the reaction.
(6) Eglinton, G.; Galbraith, A. R. J. Chem. Soc. 1959, 889-896.
(7) Hay, A. S. J. Org. Chem. 1962, 27, 3320–3321.
(8) Thomas, J. M.; Thomas, W. J. Principles and Practice in
Heterogeneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, 2015; b)
Bell, A. T., Science 2003, 299, 1688–1691; c) Astruc, D.; Lu, F.; Ruiz
Aranzaes, J. Angew. Chem., Int. Ed. 2005, 44, 7852–7872.
In conclusion, we demonstrate a mild, robust, operationally
simple and efficient method for the Csp–Csp coupling of termi-
nal alkynes employing a hypervalent iodine-based oxidant and
stable sub-nanometer gold particles supported on amino-
functionalized silica. Ten structurally different 1,3-diynes,
containing useful functional groups and structures such as
fluorine, trifluoromethyl, trifluoromethoxy group, aldehyde,
and intensively fluorescent pyrene, were isolated in excellent
yields. The catalytic system was also applicable in heterocou-
pling, providing the unsymmetrical 1,3-diynes under the same
conditions. The catalyst was perfectly recyclable owing to
negligible gold leaching and clusters maintaining their sub-
nanometer size. We infer that cationic gold is the active spe-
cies, stabilized by PhI(OAc)2 under reaction conditions. Gla-
ser-type alkyne coupling catalyzed by a heterogeneous gold
catalyst is not common, especially on the preparative scale.
This work thus underlines the importance of heterogeneous
gold catalysis in the synthesis of high value-added chemicals.
(9) (a) Alonso, F.; Yus, M. ACS Catal. 2012, 2, 1441–1451; (b)
Xiao, R.; Yao, R.; Cai, M. Eur. J. Org. Chem. 2012, 4178–4184; (c)
He, Y.; Cai, C. Catal. Sci. Technol. 2012, 2, 1126–1129; (d) Nador,
F.; Volpe, M. A.; Alonso, F.; Feldhoff, A.; Kirschning, A.; Radivoy,
G. Appl. Catal. A Gen. 2013, 455, 39–45; (e) Pérez, J. M.; Cano, R.;
Yus, M.; Ramón, D. J. Synthesis 2013, 45, 1373–1379; (f) van
Gelderen, L.; Rothenberg, G.; Calderone, V. R.; Wilson, K.; Shiju, N.
R. Appl. Organomet. Chem. 2013, 27, 23–27; (g) Dar, B. A.; Vyas,
D.; Shrivastava, V.; Farooq, S.; Sharma, A.; Sharma, S.; Sharma, P.
R.; Sharma, M.; Singh, B. Comptes Rendus Chim. 2014, 17, 316–323;
(h) Nasr-Esfahani, M.; Mohammadpoor-Baltork, I.; Khosropour, A.
R.; Moghadam, M.; Mirkhani, V.; Tangestaninejad, S.; Agabekov, V.;
Rudbari, H. A. RSC Adv. 2014, 4, 14291–14296; (i) Liu, L.;
Matsushita, T.; Concepción, P.; Leyva-Pérez, A.; Corma, A. ACS
Catal. 2016, 6, 2211–2221; (j) Biswas, S.; Mullick, K.; Chen, S. Y.;
Kriz, D. A.; Shakil, M.; Kuo, C.-H.; Angeles-Boza, A. M.; Rossi, A.
R.; Suib, S. L. ACS Catal. 2016, 6, 5069–5080.
(10) (a) Stratakis, M.; Garcia, H. Chem. Rev. 2012, 112, 4469–4506;
(b) Zhang, Y.; Cui, X.; Shi, F.; Deng, Y. Chem. Rev. 2012, 112,
2467–2505; (c) Takei, T.; Akita, T.; Nakamura, I.; Fujitani, T.;
Okumura, M.; Okazaki, K.; Huang, J.; Ishida, T.; Haruta, M. In
Advances in Catalysis; Jentoft, F. C., Ed.; Elsevier: Amsterdam, 2012;
Vol. 55, pp. 1–126; (d) Huang, J.; Haruta, M. In Bridging
Heterogeneous And Homogeneous Catalysis: Concepts, Strategies,
And Applications; Can, L.; Yan, L., Eds.; Wiley-VCH Verlag GmbH
& Co. KGaA: Weinheim, 2014; pp. 397–424; (e) Heterogeneous
Gold Catalysts and Catalysis; Ma, Z.; Dai, S., Eds.; The Royal
Society of Chemistry: Cambridge, 2014; (f) Freakley, S. J.; He, Q.;
Kiely, C. J.; Hutchings, G. J. Catal. Lett. 2015, 145, 71–79; (g) Gold
Catalysis: Preparation, Characterization, and Applications; Prati, L.,
Villa, A., Eds.; Pan Stanford Publishing: Singapore, 2016; (h)
Ciriminna, R.; Falletta, E.; Della Pina, C.; Teles, J. H.; Pagliaro, M.
Angew. Chem., Int. Ed. 2016, 55, 14210–14217.
AUTHOR INFORMATION
Corresponding Author
* E-mail: marco.ranocchiari@psi.ch (M.R.), atogni@ethz.ch
(A.T.), jeroen.vanbokhoven@chem.ethz.ch (J.v.B.).
Author Contributions
¶B.V. and J.V. contributed equally.
Notes
Any additional relevant notes should be placed here.
ASSOCIATED CONTENT
Supporting Information
4
ACS Paragon Plus Environment