M. Schnürch et al.
FULL PAPER
man, G. B. McGaughey, K. E. Coll, T. J. Koester, W. F. Hoff-
man, R. W. Hungate, R. L. Kendall, R. C. McFall, K. W. Rick-
ert, R. Z. Rutledge, K. A. Thomas, Bioorg. Med. Chem. Lett.
2004, 14, 2941–2945.
two steps: First MPLC was carried out (silica gel; LP/EtOAc with
1vol.-%. TEA as eluent), which yielded the product mixture
(262 mg) containing the desired product 4a and starting material.
The product mixture was purified by Kugelrohr distillation at
100 °C in vacuo to obtain N-benzyl-N,5-diphenylthiazol-2-amine
(239 mg, 70%) as a light-brown solid; m.p. 65–66 °C; Rf = 0.45
(LP/EtOAc, 5:2). 1H NMR (200 MHz, CDCl3): δ = 5.20 (s, 2 H,
CH2), 7.26–7.39 (m, 15 H), 7.46 (s, 1 H) ppm. 13C NMR (50 MHz,
CDCl3): δ = 49.7 (CH2), 97.6, 121.4ϫ2, 122.9, 126.6, 127.8,
128.1ϫ2, 128.8ϫ2, 129.4ϫ2, 136.7, 151.6, 158.6 ppm. MS: m/z
(%) = 343 (9), 342 (38) [M+], 252 (17), 251 (85), 250 (61), 219 (16),
167 (77), 134 (20), 91 (100). HRMS: m/z calcd. for [M + H]+
343.1263; found: 343.1281 (difference 5.25 ppm).
[4] a) S. Shah, A. Solanki, P. K. Sasmal, K.-B. Lee, J. Am. Chem.
Soc. 2013, 135, 15682–15685; b) M. Koley, A. K. Mike, P.
Heher, X. Koenig, M. Schön, M. Schnürch, K. Hilber, G.
Weitzer, M. D. Mihovilovic, MedChemComm 2013, 4, 1189–
1195; c) S. W. Oh, J. B. Lee, B. Kim, S. Jeon, M.-K. Kim, K.-
H. Nam, J.-R. Ha, M. Bhatia, G. T. Oh, D.-Y. Kim, Arch.
Pharmacal Res. 2012, 35, 1979–1988; d) D. Petrik, Y. Jiang,
S. G. Birnbaum, C. M. Powell, M.-S. Kim, J. Hsieh, A. J. Eisch,
FASEB J. 2012, 26, 3148–3162; e) E. Willems, J. Cabral-Teix-
eira, D. Schade, W. Cai, P. Reeves, P. J. Bushway, M. Lanier, C.
Walsh, T. Kirchhausen, J. C. Izpisua Belmonte, J. Cashman, M.
Mercola, Cell Stem Cell 2012, 11, 242–252; f) C.-P. Cheng, H.-
S. Huang, Y.-C. Hsu, M.-J. Sheu, D.-M. Chang, J. Clin. Immu-
nol. 2012, 32, 762–777; g) C. A. Lyssiotis, L. L. Lairson, A. E.
Boitano, H. Wurdak, S. Zhu, P. G. Schultz, Angew. Chem. Int.
Ed. 2011, 50, 200–242; h) W. W.-Y. Yau, M. K. Tang, E. Chen,
Y. Yao, I. W.-C. Wong, H. S.-S. Lee, K. K.-H. Lee, Proteome
Sci. 2011, 9, 3; i) H. Wang, J. Hao, C. C. Hong, ACS Chem.
Biol. 2011, 6, 192–197; j) H. Sadek, B. Hannack, E. Choe, J.
Wang, S. Latif, M. G. Garry, D. J. Garry, J. Longgood, D. E.
Frantz, E. N. Olson, J. Hsieh, J. W. Schneider, Proc. Natl. Acad.
Sci. USA 2008, 105, 6063–6068.
[5] For selectivity of Pd-catalyzed direct arylation reactions of thi-
azole derivatives, see: a) M. Parisien, D. Valette, K. Fagnou, J.
Org. Chem. 2005, 70, 7578–7584; b) B. Liegault, D. Lapointe,
L. Caron, A. Vlassova, K. Fagnou, J. Org. Chem. 2009, 74,
1826–1834; c) N. Primas, A. Bouillon, J.-C. Lancelot, H. El-
Kashef, S. Rault, Tetrahedron 2009, 65, 5739–5746; d) L.
Théveau, C. Verrier, P. Lassalas, T. Martin, G. Dupas, O. Quer-
olle, L. Van Hijfte, F. Marsais, C. Hoarau, Chem. Eur. J. 2011,
17, 14450–14463; e) J. Roger, F. Pozgan, H. Doucet, J. Org.
Chem. 2009, 74, 1179–1186.
N-[3-Benzyl-5-(2-fluoropyridin-3-yl)thiazol-2(3H)-ylidene]aniline
(5j): Synthesized according to General Procedure B on a 0.26 mmol
scale, yield 48 mg (51%); light-brown solid; m.p. 139–140 °C. 1H
NMR (200 MHz, CDCl3): δ = 5.06 (s, 2 H, CH2), 6.98–7.07 (m, 4
H, ArH), 7.16 (d, JH,F = 1.2 Hz, 1 H, H-4), 7.18–7.42 (m, 8 H,
ArH), 7.86–7.90 (m, 1 H, Pyr-H6) ppm. 13C NMR (50 MHz,
3
2
CDCl3): δ = 50.0 (CH2), 106.9 (d, JC,F = 8.6 Hz), 115.6 (d, JC,F
4
= 28 Hz), 121.3 (2 C), 121.8 (d, JC,F = 4.1 Hz), 123.6, 127.8 (d,
3JC,F = 16.1 Hz), 128.1 (3 C), 128.9 (2 C), 129.6 (2 C), 136.2 (d,
3
4JC,F = 3.8 Hz), 136.3, 143.6 (d, JC,F = 15.2 Hz), 151.1, 155.7,
158.7 (s, 1JC,F = 240.6 Hz) ppm. MS: m/z (%) = 361 (26) [M+], 269
(30), 167 (100), 110 (8), 91 (75). HRMS: m/z calcd. for [M + H]+
362.1114; found: 388.1118 (difference: 1.03 ppm).
Acknowledgments
T. D.-H. thanks the Austrian OeAD (Scholarship Fund) for finan-
cial support.
[6] a) L. Forlani, P. De Maria, A. Fini, J. Chem. Soc. Perkin Trans.
2 1980, 8, 1156–1158; b) A. A. Mohamed, A. W. El-Harby,
THEOCHEM 2007, 817, 125–136; c) A. A. Mohamed, A. W.
El-Harby, THEOCHEM 2008, 849, 52–61; d) Y. Zeng, Y. Ren,
Int. J. Quantum Chem. 2007, 107, 247–258.
[7] For pKa of compounds, see: a) R. G. Button, J. P. Cairns, P. J.
Taylor, J. Chem. Soc. Perkin Trans. 2 1985, 10, 1555–1558; b)
J. Speight, Section 8: Electrolytes, electromotive force, and chem-
ical equilibrium, in: Lange’s Handbook of Chemistry, 70th Anni-
versary Edition, McGraw-Hill Companies, Inc., United States,
2004, p. 8.70; c) M. B. Smith, J. March, in: March’s Advanced
Organic Chemistry, chapter 8: Acids and Bases, 6th ed., Wiley
Interscience, United States, 2007, p. 356–366.
[1] a) R. R. Williams, J. K. Cline, J. Am. Chem. Soc. 1936, 58,
1504–1505; b) M. Fujiwara, Bitamin 1999, 73, 177–198.
[2] a) S. Ren, E. J. Lien, Prog. Drug Res. 1998, 51, 1–31; b) H.
Gatanaga, S. Aizawa, Y. Kikuchi, N. Tachikawa, I. Genka, S.
Yoshizawa, Y. Yamamoto, A. Yasuka, S. Oka, AIDS Res. Hum.
Retroviruses 1999, 15, 1493–1498; c) G. Xiao, Celdinir, in:
Handbook of Metabolic Pathways of Xenobiotics, Wiley, Chich-
ester, UK, 2014, vol. 3, p. 1085–1087; d) M. Baumann, I. R.
Baxendale, S. V. Ley, N. Nikbin, Beilstein J. Org. Chem. 2011,
7, 442–495.
[3] For bioactive 2-aminothiazole derivatives, see: a) M. Biagetti,
C. P. Leslie, A. Mazzali, C. Seri, D. A. Pizzi, J. Bentley, T. Gen-
ski, R. D. Fabio, L. Zonzini, L. Caberlotto, Bioorg. Med.
Chem. Lett. 2010, 20, 4741–4744; b) S. Mahboobi, S. Dove, A.
Sellmer, M. Winkler, E. Eichhorn, H. Pongratz, T. Ciossek, T.
Baer, T. Maier, T. Beckers, J. Med. Chem. 2009, 52, 2265–2279;
c) M. P. Hay, S. Turcotte, J. U. Flanagan, M. Bonnet, D. A.
Chan, P. D. Sutphin, P. Nguyen, A. J. Giaccia, W. A. Denny, J.
Med. Chem. 2010, 53, 787–797; d) C. B. Andersen, Y. Wan,
J. W. Chang, B. Riggs, C. Lee, Y. Liu, F. Sessa, F. Villa, N.
Kwiatkowski, M. Suzuki, L. Nallan, R. Heald, A. Musacchio,
N. S. Gray, ACS Chem. Biol. 2008, 3, 180–192; e) A. Satoh, Y.
Nagatomi, Y. Hirata, S. Ito, G. Suzuki, T. Kimura, S. Maehara,
H. Hikichi, A. Satow, M. Hata, H. Ohta, H. Kawamoto, Bi-
oorg. Med. Chem. Lett. 2009, 19, 5464–5468; f) M. Warashina,
K. H. Min, T. Kuwabara, A. Huynh, F. H. Gage, P. G. Schultz,
S. Ding, Angew. Chem. Int. Ed. 2006, 45, 591–593; Angew.
[8] L. Costanzo, A. Giuffrida, G. Guglielmo, V. Ricevuto, Inorg.
Chim. Acta 1979, 33, 29–33.
[9] For the synthesis of 2-iminothiazolines by using cyclization
methods, see: a) J. AbbasiShiran, A. Yahyazadeh, M. Mamagh-
ani, M. Rassa, J. Mol. Struct. 2013, 1039, 113–118; b) S. Bala-
laie, S. Nikoo, S. Haddadi, Synth. Commun. 2008, 38, 2521–
2528; c) H. A. Samimi, M. Mamaghani, K. Tabatabaeian, Het-
erocycles 2008, 75, 2825–2833; d) S. Murru, C.-B. Singh, V.
Kavala, B. K. Patel, Tetrahedron 2008, 64, 1931–1942; e) X. C.
Wang, F. Wang, Z. J. Quan, Z. Zhang, M. G. Wang, J. Hetero-
cycl. Chem. 2006, 43, 1473–1477; f) S. H. Kim, H. Son, G.
Nam, D. Y. Chib, J. H. Kim, Bioorg. Med. Chem. Lett. 2000,
10, 1143–1145; g) J. Quinton, S. Kolodych, M. Chaumonet, V.
Bevilacqua, M.-C. Nevers, H. Volland, S. Gabillet, P. Thuéry,
C. Créminon, F. Taran, Angew. Chem. Int. Ed. 2012, 51, 6144–
6148.
Chem. 2006, 118, 605; g) M. Schnürch, B. Waldner, K. Hilber, [10] For the synthesis of 2-iminothiazolines by using substitution
M. D. Mihovilovic, Bioorg. Med. Chem. Lett. 2011, 21, 2149–
2154; h) P. Furet, G. Bold, T. Meyer, J. Roesel, V. Guagnano,
J. Med. Chem. 2006, 49, 4451–4454; i) B. Narayana, K. K. Vi-
methods, see: a) R. F. Hunter, E. R. Parken, J. Chem. Soc.
1934, 1175–1177; b) A. Miloudi, D. El-Abed, G. Boyer, J. P.
Finet, J. P. Galy, D. Siri, Eur. J. Org. Chem. 2004, 1509–1516.
jaya Raj, B. V. Ashalatha, N. S. Kumari, B. K. Sarojini, Eur. J. [11] For bioactivities of 2-iminothiazolines, see: a) A. Manaka, M.
Med. Chem. 2004, 39, 867–872; j) M. T. Bilodeau, L. D. Rod-
Sato, M. Aoki, M. Tanaka, T. Ikeda, Y. Toda, Y. Yamane, S.
4770
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 4765–4771