D. Y. Lee et al. / Tetrahedron Letters 52 (2011) 1368–1371
1371
Figure 6. Energy minimized structure of Fe3+ complex of receptor 1 as obtained by MacroModel calculation (two different views).
Tetrahedron 2009, 65, 4239; (f) Taha, A.; Mahmoud, M. M. New J. Chem. 2002,
26, 953.
Acknowledgment
6. (a) Lee, G. W.; Singh, N.; Jung, H. J.; Jang, D. O. Tetrahedron Lett. 2009, 50, 807;
(b) Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron 2008, 64, 1482; (c) Lee, G. W.;
Singh, N.; Jang, D. O. Tetrahedron Lett. 2008, 49, 1952; (d) Jung, H. J.; Singh, N.;
Jang, D. O. Tetrahedron Lett. 2008, 49, 2960; (e) Joo, T. Y.; Singh, N.; Jung, H. J.;
Jang, D. O. Bull. Korean Chem. Soc. 2008, 29, 299; (f) Singh, N.; Jang, D. O. Org.
Lett. 2007, 9, 1991; (g) Moon, K. S.; Singh, N.; Lee, G.; Jang, D. O. Tetrahedron
2007, 63, 9106; (h) Joo, T. Y.; Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron Lett.
2007, 48, 8846.
This work was supported by the Center for Bioactive Molecular
Hybrids (No. R11-2003-019-00000-0).
Supplementary data
7. (a) Ghosh, K.; Saha, I. Tetrahedron Lett. 2010, 51, 4995; (b) Ghosh, K.; Sarkar, A.
R.; Patra, A. Tetrahedron Lett. 2009, 50, 6557; (c) Zong, G.; Lu, G. Tetrahedron
Lett. 2008, 49, 5676; (d) Kim, J.; Morozumi, T.; Nakamura, H. Tetrahedron 2008,
64, 10735; (e) Kumar, S.; Singh, P.; Kaur, S. Tetrahedron 2007, 63, 11724; (f)
Kaur, S.; Kumar, S. Tetrahedron Lett. 2004, 45, 5081.
8. (a) Shang, G.-Q.; Gao, X.; Chen, M.-X.; Zheng, H.; Xu, J.-G. J. Fluoresc. 2008, 18,
1187; (b) Woodroofe, C. C.; Won, A. C.; Lippard, S. J. Inorg. Chem. 2005, 44, 3112;
(c) Grynkiewicz, G.; Poenie, M.; Tsien, R. Y. J. Biol. Chem. 1985, 260, 3440; (d)
Banthia, S.; Samanta, A. J. Phys. Chem. B 2006, 110, 6437.
Supplementary data associated with this article can be found, in
References and notes
´
1. (a) Jiang, P.; Guo, Z. Coord. Chem. Rev. 2004, 248, 205; (b) Harsanyi, G. Sensors in
Biomedical Application: Fundamentals, Technology & Applications; Technomic:
Lancaster, 2000; (c) Czarnik, A. W. Fluorescent Chemosensors for Ion and
Molecule Recognition; American Chemical Society: Washington, DC, 1993.
2. (a) Martínez-Mañez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419; (b) Eggins, B.
R. Chemical Sensors and Biosensors; John Wiley: New York, 2002; (c) Peng, X.;
Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. J. Am. Chem. Soc. 2007,
129, 1500; (d) Lu, C.; Xu, Z.; Cui, J.; Zhang, R.; Qian, X. J. Org. Chem. 2007, 72,
3554.
3. (a) Gonzlez-Vera, J. A.; Lukovi, E.; Imperiali, B. J. Org. Chem. 2009, 74, 7309; (b)
Liu, W.; Xu, L.; Sheng, R.; Wang, P.; Li, H.; Wu, S. Org. Lett. 2007, 9, 3829; (c)
Mizukami, S.; Tonai, K.; Kaneko, M.; Kikuchi, K. J. Am. Chem. Soc. 2008, 130,
14376; (d) Royzen, M.; Durandin, A.; Young, V. G., Jr.; Geacintov, N. E.; Canary, J.
W. J. Am. Chem. Soc. 2006, 128, 3854; (e) Ghosh, S.; Dey, C. K.; Manna, R.
Tetrahedron Lett. 2010, 51, 3177.
4. (a) Jung, H. J.; Singh, N.; Lee, D. Y.; Jang, D. O. Tetrahedron Lett. 2010, 51, 3962;
(b) Singh, N.; McCaughan, B.; Callan, J. F. Sens. Actuator. B: Chem. 2010, 144, 88;
(c) Lee, D. Y.; Singh, N.; Jang, D. O. Tetrahedron Lett. 2010, 51, 1103; (d) Kaur, N.;
Singh, N.; Cairns, D.; Callan, J. F. Org. Lett. 2009, 11, 2229; (e) Singh, N.;
Mulrooney, R. C.; Kaur, N.; Callan, J. F. Chem. Commun. 2008, 4900; (f) Fan, L.-J.;
Zhang, Y.; Murphy, C. B.; Angell, S. E.; Parker, M. F. L.; Flynn, B. R.; Jones, W. E.,
Jr. Coord. Chem. Rev. 2009, 253, 410; (g) Dos Santos, C. M. G.; Harte, A. J.; Quinn,
S. J.; Gunnlaugsson, T. Coord. Chem. Rev. 2008, 252, 2512.
5. (a) Kotaka, H.; Konishi, G.-I.; Mizuno, K. Tetrahedron Lett. 2010, 51, 181; (b)
Saito, Y.; Suzuki, A.; Imai, K.; Nemoto, N.; Saito, I. Tetrahedron Lett. 2010, 51,
2606; (c) Yamaguchi, I.; Goto, K.; Sato, M. Tetrahedron 2009, 65, 3645; (d) Ando,
Y.; Homma, Y.; Hiruta, Y.; Citterio, D.; Suzuki, K. Dyes Pigment. 2009, 83, 198;
(e) Zimmermann-Dimer, L. M.; Reis, D. C.; Machado, C.; Machado, V. G.
9. (a) Wang, W.; Springsteen, G.; Gao, S.; Wang, B. Chem. Commun. 2000, 1283; (b)
Sukhdeep, K.; Subodh, K. Chem. Commun. 2002, 2840.
10. Synthesis of compound 4: light brown solid: mp 131–132 °C; 1H NMR (400 MHz,
CDCl3): d 3.20 (t, 4H, –CH2, J = 5.6 Hz), 4.07 (t, 4H, –CH2, J = 5.6 Hz), 4.78 (s, 2H,
–CH2), 6.66–6.68 (m, 2H, Ar), 6.92–6.96 (m, 2H, Ar), 7.35–7.43 (m, 6H, Ar),
7.73–7.75 (m, 2H, Ar), 7.97–7.99 (m, 2H, Ar), 8.41 (s, 1H, Ar), 8.48–8.50 (m, 2H,
Ar), 10.28 (s, 2H, –CHO); 13C NMR (100 MHz, CDCl3): d 52.1, 53.7, 67.5, 112.5,
121.0, 124.8, 125.1, 125.2, 126.3, 128.2, 128.7, 129.4, 131.5, 131.6, 136.0, 161.0,
189.7. Anal. Calcd for C33H29NO4: C, 78.71; H, 5.80; N, 2.78. Found: C, 78.73; H,
5.77; N, 2.75.
11. Synthesis of compound 1: light brown solid: mp 129–130 °C; 1H NMR (400 MHz,
CDCl3): d 3.11 (t, 4H, –CH2, J = 5.4 Hz), 4.00 (t, 4H, –CH2, J = 5.4 Hz), 4.27 (s, 4H,
–CH2), 4.70 (s, 2H, –CH2), 6.51–6.60 (m, 6H, Ar), 6.75–6.79 (m, 2H, Ar), 7.01–
7.06 (m, 4H, Ar), 7.19–7.25 (m, 6H, Ar), 7.36–7.45 (m, 8H, Ar), 7.69 (s, 2H, Ar),
7.92–7.95 (m, 2H, Ar), 8.35 (s, 1H, Ar), 8.45–8.47 (m, 2H, Ar), 8.93 (br, 2H, –NH),
9.37 (br, 2H, –NH); 13C NMR (100 MHz, CDCl3): d 42.6, 52.0, 53.6, 66.9, 110.9,
111.0, 112.3, 115.3, 120.6, 122.8, 125.1, 126.1, 127.0, 127.4, 128.0, 128.3, 129.2,
131.4, 131.5, 131.6, 148.3, 152.4, 156.4. Anal. Calcd for C59H51N7O2: C, 79.61; H,
5.78; N, 11.02. Found: C, 79.58; H, 5.77; N, 11.01.
12. Benesi, H.; Hildebrand, H. J. Am. Chem. Soc. 1949, 71, 2703.
13. Job, P. Ann. Chim. 1928, 9, 113.
14. (a) Moon, K. S.; Singh, N.; Lee, G. W.; Jang, D. O. Tetrahedron 2007, 63, 9106; (b)
Singh, N.; Kaur, N.; Dunn, J.; Behan, R.; Mulrooney, R. C.; Callan, J. F. Eur. Polym.
J. 2009, 45, 272.
15. Mohamed, F.; Richards, N. G. T.; Liskamp, W. C. H.; Lipton, M.; Caufield, C.;
Chang, G.; Hendrickson, T.; Still, W. C. J. Comput. Chem. 1990, 11, 440.