provided compound 2 in 81% yield with excellent diastereo-
selectivity (dr >99 : 1) and good enantioselectivity (87% ee).
Interestingly, this reaction showed a temperature effect.
Reactions at 0 and À25 1C showed improved ee values of 91
and 95%, respectively, with the same yield of 82%, but
required longer times (6 and 10 h, respectively) for completion.
Further lowering the temperature to À50 1C, led to very slow
reaction (18% yield after 18 h) and also reduced ee (85%).11
Deprotection and Pictet–Spengler cyclization would realize
the synthesis of A-86929. However, heating with formaldehyde
(paraformaldehyde) in presence of acid leads to contamination
by the fully aromatized (oxidized) byproduct.2b,12
We thank DST, New Delhi for providing financial support.
S. B. thanks CSIR, New Delhi, for his fellowship.
Notes and references
1 (a) S. F. Martin, The Alkaloids, ed. A. Brossi, Academic Press,
New York, 1987, vol. 30, pp. 251; (b) M. F. Grundon, Nat. Prod.
Rep., 1989, 6, 79; (c) J. R. Lewis, Nat. Prod. Rep., 1995, 12, 339;
(d) O. Hoshino, The Alkaloids, ed. G. A. Cordell, Academic Press,
San Diego, CA, 1998, vol. 51, pp. 323; (e) G. R. Pettit,
V. Gaddamidi, G. M. Cragg, D. L. Herald and Y. Sagawa,
J. Chem. Soc., Chem. Commun., 1984, 1693; (f) G. R. Pettit,
V. Gaddamidi and G. M. Cragg, J. Nat. Prod., 1984, 47, 1018;
(g) S. Yui, M. Mikami, M. Kitahara and M. Yamazaki,
Immunopharmacology, 1998, 40, 151; (h) S. Peter, I. Ruben and
K. Bjorn, CNS Drug Rev., 2004, 10, 230.
2 (a) W. J. Giardina and M. Williams, CNS Drug Rev., 2001, 7, 305;
(b) P. P. Ehrlich, J. W. Ralston and M. R. Michaelides, J. Org.
Chem., 1997, 62, 2782; (c) W. K. Brewster, D. E.
Nichols, R. M. Riggs, D. M. Mottola, T. W. Lovenberg,
M. H. Lewis and R. B. Mailman, J. Med. Chem., 1990, 33, 1756;
(d) O. Rascol, O. Blin, C. Thalamas, S. Descombes,
C. Soubrouillard, P. Azulay, N. Fabre, F. Viallet,
K. Lafnitzegger, S. Wright, J. H. Carter and J. G. Nutt,
Ann. Neurol., 1999, 45, 736; (e) M. Haney, E. D. Collins,
A. S. Ward, R. W. Foltin and M. W. Fischman, Psychopharma-
cology, 1999, 143, 102; (f) D. A. Gorelick, E. L. Gardner and
Z. X. Xi, Drugs, 2004, 64, 1547; (g) A. D. Stefano, P. Sozio and
L. S. Cerasa, Molecules, 2008, 13, 46; (h) M. R. Michaelides,
Y. Hong, S. DiDomenico, Jr., K. E. Asin, D. R. Britton,
C. W. Lin, M. Williams and K. Shiosaki, J. Med. Chem., 1995,
38, 3445; (i) K. Shiosaki, P. Jenner, K. E. Asin, D. Britton,
C. W. Lin, M. R. Michaelides, L. Smith, B. Bianchi,
S. J. DiDomenico, L. Hodges, Y. Hong, L. Mahan, J. Mikusa,
T. Miller, A. Nikkel, M. Stashko, D. Witte and M. Williams,
J. Pharmacol. Exp. Ther., 1996, 276, 150.
To avoid this problem, we introduced milder conditions.
Thus the sodium salt of compound 2, generated by the
reaction with NaH (2.0 equiv.), was reacted with MOMCl
(2.0 equiv.) at 0 1C and within 1 h, provided compound 9 in
96% yield (Scheme 4). Now the Pictet–Spengler type cyclization
of compound 9 using TMSOTf (1 equiv.) at À60 1C in DCM led
to the formation of the target N-nosyl hexahydrobenphenan-
thridine compound 10 in 89% yield after 12 min. This reaction
requires quenching at À60 1C using an excess of Et3N
(10 equiv.), followed by dilution with EtOAc, and then washing
with saturated NaHCO3 solution. Deprotection of N-nosyl of the
compound 10 was carried out by use of p-methoxythiophenol
(3.0 equiv.) and K2CO3 (3.0 equiv.) in CH3CN–DMSO (49 : 1)
at rt. Within
3 h, hexahydro-3-thia-5-aza-cyclopenta[c]-
phenanthrene 11 was obtained in 94% yield. The optical rotation
of compound 11 {[a]2D3 À311 (c 0.43, MeOH)} was comparable
with the literature3 data {[a]2D5 À348 (c 0.43, MeOH)}. Finally
demethylation of compound 11 by BBr3 at À78 1C accomplished
the synthesis of A-86929 as its hydrobromide salt 1aÁHBr
in 86% of yield. Optical rotation of compound 1aÁHBr
{[a]2D3 À161 (c 0.75, MeOH)} well matched with the literature3
data {[a]2D5 À171 (c 0.76, MeOH)}.
3 M. Yamashita, K. Yamada and K. Tomioka, J. Am. Chem. Soc.,
2004, 126, 1954.
4 R. J. Perner, C. Lee, M. Jiang, Y. Gu, S. DiDomenico,
E. K. Bayburt, K. M. Alexander, K. L. Kohlhaas, M. F. Jarvis,
E. L. Kowaluk and S. S. Bhagwat, Bioorg. Med. Chem. Lett., 2005,
15, 2803.
5 J.-L. Renaud, C. Aubert and M. Malacria, Tetrahedron, 1999, 55,
5113.
6 (a) W. H. Pearson, B. W. Lian and S. C. Bergmeier, in
Comprehensive Heterocyclic Chemistry II, ed. A. Padwa,
Pergamon, Oxford, 2nd edn, 1996, vol. 1A, pp. 1–60;
(b) K. M. Lokanatha Rai and A. Hassner, in Comprehensive
Heterocyclic Chemistry II, ed. A. Padwa, Pergamon, Oxford, 2nd
edn, 1996, vol. 1A, pp. 61–96. For recent review, see: (c) X. E. Hu,
Tetrahedron, 2004, 60, 2701; (d) W. McCoull and F. A.
Davis, Synthesis, 2000, 1347; (e) R. S. Atkinson, Tetrahedron,
1999, 55, 1519; (f) D. Tanner, Angew. Chem., Int. Ed. Engl.,
1994, 33, 599.
7 S. H. Krake and S. C. Bergmeier, Tetrahedron, 2010, 66, 7337.
8 S. Hajra, B. Maji, D. Sinha and S. Bar, Tetrahedron Lett., 2008, 49,
4057.
Scheme 4 Synthesis of A-86929 1a.
9 D. A. Evans, M. M. Fad and M. T. Bilodeau, J. Am. Chem. Soc.,
1994, 116, 2742.
10 S. Hajra, B. Maji and D. Mal, Adv. Synth. Catal., 2009, 351, 859;
Corrigendum: S. Hajra, B. Maji and D. Mal, Adv. Synth. Catal.,
2010, 352, 3112.
11 S. Taylor, J. Gullick, P. McMorn, D. Bethell, P. C. B. Page,
F. E. Hancock, F. King and G. J. Hutchings, Top. Catal., 2003, 24,
43.
12 Y. Asano, M. Yamashita, K. Nagai, M. Kuriyama, K. Yamada
and K. Tomioka, Tetrahedron Lett., 2001, 42, 8493.
In summary, we have accomplished a concise asymmetric
synthesis of (–)-(5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-
3-thia-5-azacyclopenta[c]phenanthrene-9,10-diol], A-86929 1a
via one-pot catalytic enantioselective aziridination and
subsequent one-pot Friedel–Crafts cyclization with tethered
and in situ generated aziridine with high diastereo- and
enantioselectivity. The above synthesis of A-86929 has been
achieved in 56% overall yield in five steps from styrene 4.
c
3982 Chem. Commun., 2011, 47, 3981–3982
This journal is The Royal Society of Chemistry 2011