complex structure proceeds through a stepwise conformational
search via consecutive assembly–disassembly processes. In
contrast to the above mentioned building blocks, the fluorenes
described here do not exhibit any signs of hysteresis. This
adaptive behaviour is also illustrated by the finding that a
relatively small change in the linker length (butynol vs. hexynol)
results in a complete switch in the chiroptical properties of the
double helical hybrid.
(o) N. Bouquin, V. L. Malinovskii, X. Guegano, S.-X. Liu,
´
S. Decurtins and R. Haner, Chem.–Eur. J., 2008, 14, 5732–5736;
¨
(p) H. Kashida, T. Fujii and H. Asanuma, Org. Biomol. Chem.,
2008, 6, 2892–2899; (q) R. Haner, F. Samain and
¨
V. L. Malinovskii, Chem.–Eur. J., 2009, 15, 5701–5708;
(r) T. M. Wilson, T. A. Zeidan, M. Hariharan, F. D. Lewis and
M. R. Wasielewski, Angew. Chem., Int. Ed., 2010, 49, 2385–2388;
(s) R. Haner, F. Garo, D. Wenger and V. L. Malinovskii, J. Am.
¨
Chem. Soc., 2010, 132, 7466–7471.
16 D. Neher, Macromol. Rapid Commun., 2001, 22, 1365–1385.
17 A. C. Grimsdale and K. Mullen, Adv. Polym. Sci., 2008, 212,
1–48.
¨
In conclusion, we have demonstrated the molecular organi-
zation of fluorene molecules by hybridization of complementary
DNA strands. The fluorene units support the formation of
stable hybrids and show optical properties which are charac-
teristic for ordered p-aggregates. While the nature of the linker
did not affect the hybrid stability, it had a pronounced effect
on the chiroptical properties of the chromophore assembly.
The fluorene derivatives described herein represent a promising
class of novel building blocks for the modular assembly of
DNA-based nanomaterials.
18 A. C. Grimsdale, K. L. Chan, R. E. Martin, P. G. Jokisz and
A. B. Holmes, Chem. Rev., 2009, 109, 897–1091.
19 R. Abbel, A. P. H. J. Schenning and E. W. Meijer, J. Polym. Sci.,
Part A: Polym. Chem., 2009, 47, 4215–4233.
20 T. Nakano, K. Takewaki, T. Yade and Y. Okamoto, J. Am. Chem.
Soc., 2001, 123, 9182–9183.
21 G. Hughes and M. R. Bryce, J. Mater. Chem., 2005, 15,
94–107.
22 T. Nakano and T. Yade, J. Am. Chem. Soc., 2003, 125,
15474–15484.
23 J. C. Sancho-Garcia, Theor. Chem. Acc., 2010, 1–8.
24 V. Coropceanu, T. Nakano, N. E. Gruhn, O. Kwon, T. Yade,
K. Katsukawa and J. L. Bredas, J. Phys. Chem. B, 2006, 110,
9482–9487.
This work was supported by the Swiss National Foundation
(grant 200020-117617).
25 A. Kaeser and A. P. H. J. Schenning, Adv. Mater., 2010, 22,
2985–2997.
Notes and references
26 J. W. Chen and Y. Cao, Acc. Chem. Res., 2009, 42, 1709–1718.
27 O. Inganas, F. L. Zhang and M. R. Andersson, Acc. Chem. Res.,
2009, 42, 1731–1739.
28 C. Poriel, J. J. Liang, J. Rault-Berthelot, F. Barriere, N. Cocherel,
A. M. Z. Slawin, D. Horhant, M. Virboul, G. Alcaraz,
N. Audebrand, L. Vignau, N. Huby, G. Wantz and L. Hirsch,
Chem.–Eur. J., 2007, 13, 10055–10069.
1 N. C. Seeman, Mol. Biotechnol., 2007, 37, 246–257.
2 C. M. Niemeyer, Nano Today, 2007, 2, 42–52.
3 K. V. Gothelf and T. H. Labean, Org. Biomol. Chem., 2005, 3,
4023–4037.
4 N. C. Seeman, Annu. Rev. Biochem., 2010, 79, 65–87.
5 D. Y. Yang, M. J. Campolongo, T. N. N. Tran, R. C. H. Ruiz,
J. S. Kahn and D. Luo, Wiley Interdiscip. Rev.: Nanomed.
Nanobiotechnol., 2010, 2, 648–669.
6 E. T. Kool, Acc. Chem. Res., 2002, 35, 936–943.
7 J. Wengel, Org. Biomol. Chem., 2004, 2, 277–280.
8 M. Endo and H. Sugiyama, ChemBioChem, 2009, 10, 2420–2443.
9 R. Varghese and H. A. Wagenknecht, Chem. Commun., 2009,
2615–2624.
29 S. Barik and S. Valiyaveettil, Macromolecules, 2008, 41,
6376–6386.
30 W. Y. Wong, Coord. Chem. Rev., 2005, 249, 971–997.
31 M. H. Caruthers, Science, 1985, 230, 281–285.
32 (a) A. D. Malakhov, M. V. Skorobogatyi, I. A. Prokhorenko,
S. V. Gontarev, D. T. Kozhich, D. A. Stetsenko, I. A. Stepanova,
Z. O. Shenkarev, Y. A. Berlin and V. A. Korshun, Eur. J. Org.
Chem., 2004, 1298–1307; (b) H. Maeda, T. Maeda, K. Mizuno,
K. Fujimoto, H. Shimizu and M. Inouye, Chem.–Eur. J., 2006, 12,
10 V. V. Filichev and E. B. Pedersen, in Wiley Encycl. Chem. Biol. 1,
ed. T. P. Begley, Wiley, Hoboken, 2009, pp. 493–524.
11 V. L. Malinovskii, D. Wenger and R. Haner, Chem. Soc. Rev.,
2010, 39, 410–422.
¨
824–831; (c) V. L. Malinovskii and R. Haner, Eur. J. Org. Chem.,
¨
2006, 3550–3553; (d) H. Bittermann, D. Siegemund,
V. L. Malinovskii and R. Haner, J. Am. Chem. Soc., 2008, 130,
¨
15285–15287; (e) J. C. Xiao, J. L. Xu, S. Cui, H. B. Liu, S. Wang
and Y. L. Li, Org. Lett., 2008, 10, 645–648; (f) R. Haner,
¨
S. M. Biner, S. M. Langenegger, T. Meng and
12 E. Schwartz, S. Le Gac, J. J. L. M. Cornelissen, R. J. M. Nolte and
A. E. Rowan, Chem. Soc. Rev., 2010, 39, 1576–1599.
13 T. J. Bandy, A. Brewer, J. R. Burns, G. Marth, T. Nguyen and
E. Stulz, Chem. Soc. Rev, 2011, 40, 138–148.
14 R. W. Sinkeldam, N. J. Greco and Y. Tor, Chem. Rev., 2010, 110,
2579–2619.
15 (a) F. D. Lewis, T. F. Wu, E. L. Burch, D. M. Bassani, J. S. Yang,
S. Schneider, W. Jager and R. L. Letsinger, J. Am. Chem. Soc.,
1995, 117, 8785–8792; (b) K. Berlin, R. K. Jain, M. D. Simon and
C. Richert, J. Org. Chem., 1998, 63, 1527–1535;
(c) U. B. Christensen and E. B. Pedersen, Nucleic Acids Res.,
V. L. Malinovskii, Angew. Chem., Int. Ed., 2010, 49, 1227–1230;
(g) S. Uno, C. Dohno, H. Bittermann, V. L. Malinovskii, R. Haner
¨
and K. Nakatani, Angew. Chem., Int. Ed., 2009, 48, 7362–7365.
33 (a) D. L. Horrocks and W. G. Brown, Chem. Phys. Lett., 1970, 5,
117–119; (b) F. L. Minn, J. P. Pinion and N. Filipescu, J. Phys.
Chem., 1971, 75, 1794–1798; (c) F. M. Winnik, Macromolecules,
1989, 22, 734–742; (d) D. Thirion, C. Poriel, F. Barriere,
R. Metivier, O. Jeannin and J. Rault-Berthelot, Org. Lett., 2009,
2002, 30, 4918–4925; (d) S. M. Langenegger and R. Haner, Helv.
¨
Chim. Acta, 2002, 85, 3414–3421; (e) A. D. Q. Li, W. Wang and
L. Q. Wang, Chem.–Eur. J., 2003, 9, 4594–4601; (f) N. Rahe,
C. Rinn and T. Carell, Chem. Commun., 2003, 2119–2121;
(g) C. Beuck, I. Singh, A. Bhattacharya, W. Heckler,
V. S. Parmar, O. Seitz and E. Weinhold, Angew. Chem., Int. Ed.,
2003, 42, 3958–3960; (h) V. V. Filichev, U. B. Christensen,
E. B. Pedersen, B. R. Babu and J. Wengel, ChemBioChem, 2004,
11, 4794–4797; (e) I. Trkulja and R. Haner, Bioconjugate Chem.,
¨
2007, 18, 289–292; (f) F. Samain, V. L. Malinovskii,
S. M. Langenegger and R. Haner, Bioorg. Med. Chem., 2008, 16,
27–33.
¨
34 H. Saigusa and E. C. Lim, Acc. Chem. Res., 1996, 29, 171–178.
35 T. Nakano, M. Tanikawa, O. Nakagawa, T. Yade and
T. Sakamoto, J. Polym. Sci., Part A: Polym. Chem., 2009, 47,
239–246.
36 N. Berova, K. Nakanishi and R. W. Woody, Circular Dichroism—
Principles and Applications, Wiley-VCH, New York, 2nd edn,
2000.
37 M. Ardhammar, T. Kurucsev and B. Norden, in Circular Dichroism—
Principles and Applications, ed. N. Berova, K. Nakanishi and
R. W. Woody, Wiley-VCH, New York, 2000, pp. 741–768.
5, 1673–1679; (i) S. M. Langenegger and R. Haner, Tetrahedron
¨
Lett., 2004, 45, 9273–9276; (j) Y. Zheng, H. Long, G. C. Schatz
and F. D. Lewis, Chem. Commun., 2005, 4795–4797;
(k) S. M. Langenegger and R. Haner, ChemBioChem, 2005, 6,
¨
2149–2152; (l) C. Wagner and H. A. Wagenknecht, Org. Lett.,
2006, 8, 4191–4194; (m) J. N. Wilson and E. T. Kool, Org. Biomol.
Chem., 2006, 4, 4265–4274; (n) V. L. Malinovskii, F. Samain and
R. Haner, Angew. Chem., Int. Ed., 2007, 46, 4464–4467;
¨
c
3170 Chem. Commun., 2011, 47, 3168–3170
This journal is The Royal Society of Chemistry 2011