Organic Letters
Letter
13274. (e) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356, 1137.
(f) Haibach, M. C.; Seidel, D. Angew. Chem., Int. Ed. 2014, 53, 5010.
(g) Kwon, S. J.; Kim, D. Y. Chem. Rec. 2016, 16, 1191. (h) Xiao, M.;
Zhu, S.; Shen, Y.; Wang, L.; Xiao, J. Youji Huaxue 2018, 38, 328.
(3) For the internal redox reaction developed by our group, see:
(a) Mori, K.; Ohshima, Y.; Ehara, K.; Akiyama, T. Chem. Lett. 2009,
38, 524. (b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett.
2010, 12, 1732. (c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem.
Soc. 2011, 133, 2424. (d) Mori, K.; Sueoka, S.; Akiyama, T. Chem.
Lett. 2011, 40, 1386. (e) Mori, K.; Kawasaki, T.; Akiyama, T. Org.
Lett. 2012, 14, 1436. (f) Mori, K.; Kurihara, K.; Akiyama, T. Chem.
Commun. 2014, 50, 3729. (g) Mori, K.; Umehara, N.; Akiyama, T.
Adv. Synth. Catal. 2015, 357, 901. (h) Yoshida, T.; Mori, K. Chem.
Commun. 2017, 53, 4319. (i) Machida, M.; Mori, K. Chem. Lett. 2018,
47, 868. (j) Yokoo, K.; Mori, K. Chem. Commun. 2018, 54, 6927.
(k) Hisano, N.; Kamei, Y.; Kansaku, Y.; Yamanaka, M.; Mori, K. Org.
Lett. 2018, 20, 4223. (l) Yoshida, T.; Mori, K. Chem. Commun. 2018,
54, 12686. (m) Tamura, R.; Kitamura, E.; Tustsumi, R.; Yamanaka,
M.; Akiyama, T.; Mori, K. Org. Lett. 2019, 21, 2383. (n) Otawa, Y.;
Mori, K. Chem. Commun. 2019, 55, 13856. For an asymmetric
version of the internal redox reaction catalyzed by chiral phosphoric
acid, see: (o) Mori, K.; Ehara, K.; Kurihara, K.; Akiyama, T. J. Am.
Chem. Soc. 2011, 133, 6166.
almost the same level of conversion as the optimized reaction
conditions (74%, eq 2. cf. 99%, entry 13 in Table 1). These
results would rule out the nucleophilic addition initiated
reaction pathway. The possibility of the C−N bond cleavage
pathway was further supported by a cation-trapping experi-
ment (eq 3). When a solution of 5a was treated with 1.0 mol %
of BF3·OEt2 and 5 equiv of NaBH4, saturated product 8 was
obtained in 12% chemical yield, accompanied by normal
products 4a and 6a (43%).10
In summary, we have developed an effective synthetic
method to generate multisubstituted quinolinone derivatives
via a C−N bond cleavage induced ring recombination strategy.
This method has two features: (1) accomplishment of seven
transformations including C(sp3)−H bond functionalization
and C−N bond cleavage in one pot, and (2) a simple reaction
procedure (only mixing the substrate, acid, and base).
Additional experiments suggested that the proposed acid-
promoted C−N bond cleavage mechanism would be the most
reliable pathway. Further investigation of the synthesis of more
complex cyclic structures starting from internal redox adducts
is underway.
(4) For the double C(sp3)−H bond functionalization by sequential
utilization of the internal redox reaction developed by our group, see:
(a) Mori, K.; Kurihara, K.; Yabe, S.; Yamanaka, M.; Akiyama, T. J.
Am. Chem. Soc. 2014, 136, 3744. See, also: (b) Wang, L.; Xiao, J. Org.
Chem. Front. 2016, 3, 635. (c) Mori, K.; Isogai, R.; Kamei, Y.;
Yamanaka, M.; Akiyama, T. J. Am. Chem. Soc. 2018, 140, 6203.
(d) Mori, K.; Umehara, N.; Akiyama, T. Chem. Sci. 2018, 9, 7327.
(e) Kataoka, M.; Otawa, Y.; Ido, N.; Mori, K. Org. Lett. 2019, 21,
9334.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge at
■
S
Experimental procedures, analytical and spectroscopic
data for new compounds, copies of NMR spectra,
computational details, and Cartesian coordinates (PDF)
(5) Such reactions are classified as the “tert-amino effect.” For
reviews, see: (a) Meth-Cohn, O.; Suschitzky, H. Adv. Heterocycl.
Chem. 1972, 14, 211. (b) Verboom, W.; Reinhoudt, D. N. Recl. Trav.
Chim. Pays-Bas 1990, 109, 311. (c) Meth-Cohn, O. Adv. Heterocycl.
Chem. 1996, 65, 1. (d) Quintela, J. M. Recent Res. Dev. Org. Chem.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
́
́
́
́
2003, 7, 259. (e) Matyus, P.; Elias, O.; Tapolcsanyi, P.; Polonka-
́
́
́
Balint, A.; Halasz-Dajka, B. Synthesis 2006, 2006, 2625.
(6) For selected examples of the internal redox reactions, see:
(a) Pastine, S. J.; McQuaid, K. M.; Sames, D. J. Am. Chem. Soc. 2005,
127, 12180. (b) Pastine, S. J.; Sames, D. Org. Lett. 2005, 7, 5429.
(c) Zhang, C.; Kanta De, C.; Mal, R.; Seidel, D. J. Am. Chem. Soc.
2008, 130, 416. (d) Che, X.; Zheng, L.; Dang, Q.; Bai, X. Synlett
Notes
The authors declare no competing financial interest.
́
́
2008, 2008, 2373. (e) Polonka-Balint, A.; Saraceno, C.; Ludanyi, K.;
ACKNOWLEDGMENTS
■
́
́
Benyei, A.; Matyus, P. Synlett 2008, 2008, 2846. (f) Zhang, C.;
Murarka, S.; Seidel, D. J. Org. Chem. 2009, 74, 419. (g) McQuaid, K.
M.; Sames, D. J. Am. Chem. Soc. 2009, 131, 402. (h) Shikanai, D.;
Murase, H.; Hata, T.; Urabe, H. J. Am. Chem. Soc. 2009, 131, 3166.
(i) Ruble, J. C.; Hurd, A. R.; Johnson, T. A.; Sherry, D. A.; Barbachyn,
M.; Toogood, R. P. L.; Bundy, G. L.; Graber, D. R.; Kamilar, G. M. J.
Am. Chem. Soc. 2009, 131, 3991. (j) Yang, S.; Li, Z.; Jian, X.; He, C.
Angew. Chem., Int. Ed. 2009, 48, 3999. (k) Mahoney, M. J.; Moon, D.
T.; Hollinger, J.; Fillion, E. Tetrahedron Lett. 2009, 50, 4706.
(l) McQuaid, K. M.; Long, J. Z.; Sames, D. Org. Lett. 2009, 11, 2972.
(m) Vadola, P. A.; Sames, D. J. Am. Chem. Soc. 2009, 131, 16525.
This work was partially supported by a Grant-in-Aid for
Scientific Research from the Japan Society for the Promotion
of Science, and by grants from The Naito Foundation.
REFERENCES
■
(1) For recent reviews on C−H activation, see: (a) Godula, K.;
Sames, D. Science 2006, 312, 67. (b) Bergman, R. G. Nature 2007,
446, 391. (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007,
107, 174. (d) Davies, H. M. L.; Manning, J. R. Nature 2008, 451, 417.
(e) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int.
Ed. 2009, 48, 5094. (f) Jazzar, R.; Hitce, J.; Renaudat, A.; Sofack-
Kreutzer, J.; Baudoin, O. Chem. - Eur. J. 2010, 16, 2654. (g) Lyons, T.
W.; Sanford, M. S. Chem. Rev. 2010, 110, 1147. (h) Davies, H. M. L.;
́
́
́
̈
(n) Foldi, A. A.; Ludanyi, K.; Benyei, A. C.; Matyus, P. Synlett. Synlett
2010, 2010, 2109. (o) Zhou, G.; Zhang, J. Chem. Commun. 2010, 46,
6593. (p) Alajarin, M.; Marin-Luna, M.; Vidal, A. Adv. Synth. Catal.
2011, 353, 557. (q) Gorulya, A. P.; Tverdokhlebov, A. V.; Tolmachev,
A. A.; Shishkin, O. V.; Shishkina, S. V. Tetrahedron 2011, 67, 1030.
Du Bois, J.; Yu, J.-Q. Chem. Soc. Rev. 2011, 40, 1855. (i) Bruckl, T.;
̈
Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2012, 45, 826.
(j) Qin, Y.; Lv, J.; Luo, S. Tetrahedron Lett. 2014, 55, 551. (k) Davies,
H. M. L.; Morton, D. J. J. Org. Chem. 2016, 81, 343. For highlights on
visible-light photocatalysis, see: (l) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J.
Angew. Chem., Int. Ed. 2017, 56, 1960.
̈
(r) Jurberg, I. D.; Peng, B.; Wostefeld, E.; Wasserloos, M.; Maulide,
N. Angew. Chem., Int. Ed. 2012, 51, 1950. (s) Sugiishi, T.; Nakamura,
H. J. Am. Chem. Soc. 2012, 134, 2504. (t) Han, Y.-Y.; Han, W.-Y.;
Zheng, X.-M.; Yuan, W.-C. Org. Lett. 2012, 14, 4054. (u) Vadola, P.
A.; Carrera, I.; Sames, D. J. Org. Chem. 2012, 77, 6689. (v) Gao, X.;
Gaddam, V.; Altenhofer, E.; Tata, R. R.; Cai, Z.; Yongpruksa, N. A.;
Garimallaprabhakaran, K.; Harmata, M. Angew. Chem., Int. Ed. 2012,
51, 7016. (w) Chen, D.-F.; Han, Z.-Y.; He, Y.-P.; Yu, J.; Gong, L.-Z.
(2) For recent reviews on the internal redox process, see: (a) Tobisu,
M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683. (b) Pan, S. C.
Beilstein J. Org. Chem. 2012, 8, 1374. (c) Wang, M. ChemCatChem
2013, 5, 1291. (d) Peng, B.; Maulide, N. Chem. - Eur. J. 2013, 19,
D
Org. Lett. XXXX, XXX, XXX−XXX