10.1002/anie.202000224
Angewandte Chemie International Edition
Figure 4. Proposed mechanism.
H. Jatoi, G. G. Pawar, F. Robert, Y. Landais, Chem. Commun. 2019, 55,
466–469.
Keywords: amides • cross-coupling • nickel catalysis • photoredox
catalysis • radical chemistry
[15] For a recent example of Pd-catalyzed cross coupling for amide
synthesis based on the use of a photoredox catalyst to generate
carbamoyl radicals, see: W.-M. Cheng, R. Shang, H.-Z. Yu, Y. Fu,
Chem. Eur. J. 2015, 21, 13191–13195. This method, besides using
more expensive catalysts, offers a narrower substrate scope.
[16] For a review, see: a) P.-Z. Wang, J.-R. Chen, W.-J. Xiao, Org. Biomol.
Chem. 2019, 17, 6936–6951. For selected examples: b) K. Nakajima, S.
Nojima, K. Sakata, Y. Nishibayashi, ChemCatChem 2016, 8, 1028–
1032; c) Á. Gutiérrez-Bonet, C. Remeur, J. K. Matsui, G. A. Molander,
J. Am. Chem. Soc. 2017, 139, 12251–12258; d) L. Buzzetti, A. Prieto,
S. R. Roy, P. Melchiorre, Angew. Chem. Int. Ed. 2017, 56, 15039–
15043; Angew. Chem. 2017, 129, 15235–15239.
[1] A. Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage:
Structural Significance in Chemistry, Biochemistry and Materials
Science; Wiley-VCH: New York, 2003.
[2] a) S. D. Roughley, A. M. Jordan, J. Med. Chem. 2011, 54, 3451–3479;
b) D. G. Brown, J. Boström, J. Med. Chem. 2016, 59, 4443–4458.
[3] For
a
freely
accessible
database,
see:
N. A. McGrath, M. Brichacek, J. T. Njardarson J. Chem. Educ. 2010,
87, 1348–1349.
[4] a) V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471–479; b) R.
Marcia de Figueiredo, J.-S. Suppo, J.-M. Campagne, Chem. Rev. 2016,
116, 12029−12122; c) B. Shen, D. M. Makley, J. N. Johnston, Nature
2010, 465, 1027–1032.
[5] M. T. Sabatini, Boulton, T. Lee. H. F. Sneddon, T. D. Sheppard, Nat.
Catal. 2019, 2, 10–17.
[17] a) G. Goti, B. Bieszczad, A. Vega-Peñaloza, P. Melchiorre, Angew.
Chem. Int. Ed. 2019, 58, 1213–1217; Angew. Chem. 2019, 131, 1226–
1230; b) B. Bieszczad, L. A. Perego, P. Melchiorre, Angew. Chem. Int.
Ed. 2019, 58, 16878–16883; Angew. Chem. 2019, 131, 17034–17039.
[18] G. Y. Dubur, Y. R. Uldrikis, Chem. Heterocycl. Compd. 1972, 5, 762–
763.
[6] E. Valeur, M. Bradley, Chem. Soc. Rev. 2009, 38, 606–631.
[7] J. R. Dunetz, J. Magano, G. A. Weisenburger, Org. Process Res. Dev.
2016, 20, 140–177.
[19] We have optimized the reaction conditions (solvents and ligands) using
a high-throughput experimentation (HTE) approach. See Section D1
within the Supporting Information for details.
[8] D. J. C. Constable, et al. Green Chem. 2007, 9, 411–420.
[9] For selected examples, see: a) R. M. Lanigan, T. D. Sheppard, Eur. J.
Org. Chem. 2013, 7453–7465; b) K. Ishihara, S. Ohara, H. Yamamoto,
J. Org. Chem. 1996, 61, 4196–4197; c) R. K. Mylavarapu, G. C. M.
Kondaiah, N. Kolla, R. Veeramalla, P. Koilkonda, A. Bhattacharya, R.
Bandichhor, Org. Process Res. Dev. 2007, 11, 1065–1068; d) K.
Ishihara, Y. Lu, Chem. Sci. 2016, 7, 1276–1280; e) M. T. Sabatini, L.
T. Boulton, T. D. Sheppard, Sci. Adv. 2017, 3, e1701028.
[20] a) J. Luo, J. Zhang, ACS Catal. 2016, 6, 873–877; b) E. Speckmeier, T.
G. Fischer, K. Zeitler, J. Am. Chem. Soc. 2018, 140, 15353–15365.
[21] D. Prat, A. Wells, J. Hayler, H. Sneddon, C. R. McElroy, S. Abou-
Shehada, P. J. Dunn, Green Chem. 2016, 18, 288–29.
[22] For a study discussing the compatibility of molecular oxygen in
photoredox/Ni dual catalyzed cross-coupling reactions, see: M. S.
Oderinde, A. Varela-Alvarez, B. Aquila, D. W. Robbins, J. W.
Johannes, J. Org. Chem. 2015, 80, 7642–7651.
[10] For selected examples, see: a) H. Lundberg, F. Tinnis, H. Adolfsson,
Chem. Eur. J. 2012, 18, 3822–3826; b) H. Lundberg, H. Adolfsson,
ACS Catal. 2015, 5, 3271–3277.
[23] a) D. C. Blakemore, L. Castro, I. Churcher, D. C. Rees, A. W. Thomas,
D. M. Wilson, A. Wood, Nat. Chem. 2018, 10, 383–394; b) W. R. Pitt,
D. M. Parry, B. G. Perry, C. R. Groom, J. Med. Chem. 2009, 52, 2952–
2963.
[24] E. Vitaku, D. T. Smith, J. T. Njardarson, J. Med. Chem. 2014, 57,
10257–10274.
[25] A radical precursor bearing a free acidic moiety, prepared upon methyl
ester hydrolysis of compound 1a, remained unreacted under the optimal
nickel/photoredox-catalyzed carbamoylation conditions. See Section
D4 of the Supporting Information for details.
[26] a) P. Vlieghe, V. Lisowski, J. Martinez, M. Khrestchatisky, Drug
Discovery Today 2010, 15, 40–56; b) H.-J. Zhou, et al. J. Med. Chem.
2009, 52, 3028–3038.
[11] a) A. Schoenberg, R. F. Heck, J. Org. Chem. 1974, 39, 3327–3331; b)
A. Brennführer, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 2009,
48, 4114–4133; Angew. Chem. 2009, 121, 4176–4196; c) S. Roy, G. W.
Gribble, Tetrahedron 2012, 68, 9867–9923; d) J. R. Martinelli, T. P.
Clark, D. A. Watson, R. H. Munday, S. L. Buchwald, Angew. Chem.
Int. Ed. 2007, 46, 8460–8463; Angew. Chem. 2007, 119, 8612–8615.
For a method requiring mild conditions, see: e) S. D. Friis, T.
Skrydstrup, S. L. Buchwald, Org. Lett. 2014, 16, 4296–4299. For a
review on the use of stable CO-surrogates, see: f) E. Serrano, R. Martin,
Eur. J. Org. Chem. 2018, 3051–3064.
[12] S. M. Mennen, et al. Org. Process Res. Dev. 2019, 23, 1213−1242.
[13] J. A. Milligan, J. P. Phelan, S. O. Badir, G. A. Molander, Angew. Chem.
Int. Ed. 2019, 58, 6152–6163; Angew. Chem. 2019, 131, 6212–6224.
[14] For the use of carbamoyl radicals, generated under photoredox
conditions, in the carbamoylation of heterocycles via a Minisci pathway,
see: a) M. Jouffroy, J. Kong, Chem. Eur. J. 2019, 25, 2217–2221; b) A.
[27] For selected examples: a) G. Schäfer, C. Matthey, J. W. Bode, Angew.
Chem. Int. Ed. 2013, 51, 9173–9175; Angew. Chem. 2013, 124, 9307–
9310; b) A. Correa, R. Martin, J. Am. Chem. Soc. 2014, 136, 7253–
7256; c) S. Zheng, D. N. Primer, G. A. Molander, ACS Catal. 2017, 7,
7957–7961.
5
This article is protected by copyright. All rights reserved.