2124
T. Zengeya et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2121–2124
the challenge of Hoogsteen recognition of pyrimidine nucleobases
1.05
1
having only one hydrogen bonding site.2,8–11 To the best of our
knowledge, our study is the first attempt at overcoming the
requirement for a polypurine tract in RNA triple helices using mod-
ified PNA. Work is in progress in our lab to test other modified
nucleobases that are expected to lead to further improvements in
recognition of C–G inversions in RNA double helices.
PNA1/HRP3
0.95
0.9
Acknowledgment
We thank Binghamton University and NIH (R01 GM071461) for
support of this research.
0.85
0
20
40
60
Temperature
80
100
Supplementary data
Figure 4. UV thermal melting curve of HRP3 (5.25 lM) and PNA1 (18 lM) in
100 mM sodium acetate, 1.0 mM EDTA, pH 5.5.
Supplementary data (experimental procedures, copies of CD
and NMR data, details PNA synthesis and ITC experiments and
data) associated with this article can be found, in the online ver-
Table 2
Sequence specificity of PNA binding to RNA hairpinsa
HRP1a
HRP2a
HRP3a
HRP4a
References and notes
PNA (variable base)
(G–C)
(A–U)
(C–G)
(U–A)
1. (a) Thomas, J. R.; Hergenrother, P. J. Chem. Rev. 2008, 108, 1171; (b) Sucheck, S.
J.; Wong, C. H. Curr. Opin. Chem. Biol. 2000, 4, 678; (c) Chow, C. S.; Bogdan, F. M.
Chem. Rev. 1997, 97, 1489.
PNA1 (iC)
PNA3 (C)b
PNA4 (T)b
PNA5 (G)b
PNA6 (A)b
0.5
84.0
2.7
1.5
6.0
0.8
0.4
47.0
0.4
1.0
0.5
0.5
0.2
0.7
0.8
0.2
0.02
0.09
0.05
2. Fox, K. R.; Brown, T. Q. Rev. Biophys. 2005, 38, 311.
3. Dervan, P. B.; Edelson, B. S. Curr. Opin. Struct. Biol. 2003, 13, 284.
4. (a) Roberts, R. W.; Crothers, D. M. Science 1992, 258, 1463; (b) Han, H.; Dervan,
P. B. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 3806; (c) Escude, C.; Francois, J. C.; Sun,
J. S.; Ott, G.; Sprinzl, M.; Garestier, T.; Helene, C. Nucleic Acids Res. 1993, 21,
5547.
1.6
Association constants Ka  106 MÀ1 in sodium acetate buffer, pH 5.5.
a
b
Data from our previous study, Ref. 6.
5. Nielsen, P. E.; Egholm, M.; Berg, R. H.; Buchardt, O. Science 1991, 254, 1497.
6. Li, M.; Zengeya, T.; Rozners, E. J. Am. Chem. Soc. 2010, 132, 8676.
7. Benner, S. A. Acc. Chem. Res. 2004, 37, 784.
selectivity of PNA1 for HRP3 was marginal, which is most likely re-
sult of a less than ideal alignment of iC in the iC⁄C–G triplet. How-
ever, among all nucleobases studied for the recognition of the C–G
inversions in RNA, iC gave the highest binding affinity (see the
HRP3 column in Table 2), though the improvement is small.
In summary, we have synthesized the first PNA analogue bear-
ing 5-methylisocytidine nucleobase. While iC is currently the best
nucleobase to recognize C–G inversions in the polypurine tract of
an RNA double helix, the binding affinity and sequence selectivity
remain modest. In fact, iC is also the best base for recognition of U–
A inversions (Table 2, last column) and may serve as universal base
to be used against pyrimidine inversions instead of the natural
nucleobases. Decreased binding affinity and sequence selectivity,
similar to our results, has also been observed in recognition of C–
G and T–A inversions in polypurine tracts of DNA, and illustrates
8. (a) Buchini, S.; Leumann, C. J. Angew. Chem., Int. Ed. 2004, 43, 3925; (b) Prevot-
Halter, I.; Leumann, C. J. Bioorg. Med. Chem. Lett. 1999, 9, 2657.
9. (a) Ranasinghe, R. T.; Rusling, D. A.; Powers, V. E. C.; Fox, K. R.; Brown, T. Chem.
Commun. 2005, 2555; (b) Rusling, D. A.; Powers, V. E. C.; Ranasinghe, R. T.;
Wang, Y.; Osborne, S. D.; Brown, T.; Fox, K. R. Nucleic Acids Res. 2005, 33, 3025.
10. (a) Semenyuk, A.; Darian, E.; Liu, J.; Majumdar, A.; Cuenoud, B.; Miller, P. S.;
MacKerell, A. D., Jr.; Seidman, M. M. Biochemistry 2010, 49, 7867; (b)
Wachowius, F.; Rettig, M.; Palm, G.; Weisz, K. Tetrahedron Lett. 2008, 49, 7264.
11. Eldrup, A. B.; Dahl, O.; Nielsen, P. E. J. Am. Chem. Soc. 1997, 119, 11116.
12. Wojciechowski, F.; Hudson, R. H. E. Curr. Top. Med. Chem. 2007, 7, 667.
13. Wojciechowski, F.; Hudson, R. H. E. J. Org. Chem. 2008, 73, 3807.
14. Stoss, P.; Kaes, E.; Eibel, G.; Thewalt, U. J. Heterocycl. Chem. 1991, 28, 231.
15. Meltzer, P. C.; Liang, A. Y.; Matsudaira, P. J. Org. Chem. 1995, 60, 4305.
16. Salim, N. N.; Feig, A. L. Methods 2009, 47, 198; Feig, A. L. Methods Enzymol. 2009,
468, 409.
17. Ratilainen, T.; Holmen, A.; Tuite, E.; Nielsen, P. E.; Norden, B. Biochemistry 2000,
39, 7781; Chin, T.-M.; Tseng, M.-H.; Chung, K.-Y.; Hung, F.-S.; Lin, S.-B.; Kan, L.-
S. J. Biomol. Struct. Dyn. 2001, 19, 543.