depending on the alkyl groups linked to the phenylenediamine
nitrogens. M1L2 complexes were formed with zinc, nickel and
cadmium ions. 113Cd NMR revealed an octahedral coordination
sphere of the metal. Extremely high oxidation potential shifts
of up to 950 mV were observed upon complexation of the
transition metal cations depending on the nature of the ligand.
Tetrahedron Lett., 2001, 42, 3541–3543; (c) H. Plenio and
D. Burth, Organometallics, 1996, 15, 1151–1156; (d) A. E. Kaifer,
L. Echegoyen, D. A. Gustowski, D. M. Goli and G. W. Gokel,
J. Am. Chem. Soc., 1983, 105, 7168–7169.
10 C. Amatore, D. Genovese, E. Maisonhaute, N. Raouafi and
B. Schollhorn, Angew. Chem., Int. Ed., 2008, 47, 5811–5814.
¨
11 (a) C. J. McKenzie, T. Buchen, A. Hazell, L. Jessen, L. Nielsen,
J. Pedersen and D. Schollmeyer, J. Chem. Soc., Dalton Trans.,
1997, 2697–2703; (b) H. Kim, M. Seo, M. An, J. Hong, Y. Tian,
J. Choi, O. Kwon, K. Lee and B. Cho, Angew. Chem., Int. Ed.,
2008, 47, 1–5; (c) T. Hirano, K. Kikuchi, Y. Urano, T. Higuchi and
T. Nagano, J. Am. Chem. Soc., 2000, 122, 12399–12400.
12 M. Martin, P. Plaza, Y. Meyer, F. Badaoui, J. Bourson,
J. P. Lefevre and B. Valeur, J. Phys. Chem., 1996, 100, 6879–6888.
13 M. Lee, D. J. Jang, D. Kim, S. S. Lee and B. H. Boo, Bull. Korean
Chem. Soc., 1991, 12, 429–433.
14 A. J. Pearson and W. Xiao, J. Org. Chem., 2003, 68, 5361–5368.
15 (a) A. M. Brouwer, J. Phys. Chem., 1997, 101, 3626–3633;
(b) L. A. Coury, L. Yang and R. W. Murray, Anal. Chem., 1993,
65, 242–246; (c) T. Yao and S. Musha, Chem. Lett., 1974, 939–944.
16 Recent examples: (a) M. Sato, Y. Mori and T. Iida, Synthesis,
1992, 539–540; (b) J. P. Wolfe, S. Wagaw, J.-F. Marcoux and
S. L. Buchwald, Acc. Chem. Res., 1998, 31, 805–818;
(c) N. Raouafi, N. Belhadj, K. Boujlel, A. Ourari, C. Amatore,
All ligands show a distinct chemoselectivity (for 1a–c: Zn2+
>
Cd2+ > Ni2+; and for 2a–c: Zn2+ c Ni2+,Cd2+). Contrary
to the pyridyl derivatives 1 the oxidation of the thiophenyl
containing ligands 2 and their metal complexes display a
fully reversible oxidation to the corresponding dications. The
mechanism involves ejection and recomplexation of the
zinc cation. These compounds are thus predestined for the
development of selective Zn2+ sensors as well as for potential
applications as zinc release probes.
Acknowledgements
This work was supported by the DGRST and the CNRS
(cooperation CNRS-DGRST, UMR 8640, LIA XiamENS),
E. Maisonhaute and B. Schollhorn, Tetrahedron Lett., 2009, 50,
1720–1722.
¨
the Ecole Normale Superieure, the Universite Pierre et Marie
´ ´
17 (a) A. F. Abdel-Magid and C. A. Maryanoff, Synthesis, 1990,
537–539; (b) R. F. Borch, Org. Synth., 1988, Coll. vol. 6, 499;
(c) R. F. Borch, Org. Synth., 1972, 52, 124.
Curie, and the French Ministry of research through ANR
REEL Blan06-2_136291.
18 (a) B. Hacht, H. Tayaa, A. Benayed and M. Mimouni, J. Solution
Chem., 2002, 31, 757–769; (b) M. L. Lozamo-Camargo, A. Rojas-
Hermandez, M. Comez-Hermandez, M. L. Pacheco-Hermandez,
L. Galicia and M. T. Ramirez-Silva, Talanta, 2007, 72, 1548–1468;
(c) A. Delaga, A. Pladzyk, K. Baranowska and J. Jezierska, Inorg.
Chim. Acta, 2009, 362, 5085–5096.
19 G. Ferraudi, J. C. Canales, B. Kharisov, J. Costamagna,
J. G. Zagal, G. Cardenas-Jiron and M. Paez, J. Coord. Chem.,
2005, 58, 89–109.
References
1 J. J. R. Frau´ sto da Silva and R. J. P. Williams, The Biological
Chemistry of the Elements: The Inorganic Chemistry of Life, Oxford
University Press, New York, 2001.
2 E. L. Que, D. W. Domaille and C. J. Chang, Chem. Rev., 2008,
108, 1517–1549.
3 (a) M. Anke, L. Angelow, M. Glu, M. Muller and H. Illing,
Fresenius’ J. Anal. Chem., 1995, 352, 92–96; (b) Metal Ions in Life
Sciences – vol. 2: Nickel and Its Surprising Impact in Nature, ed.
A. Sigel, H. Sigel and R. K. O. Sigel, J. Wiley & Sons, West Sussex,
2007.
4 A. W. Hayes, Principals and Methods of Toxicology, CRC Press,
Philadelphia, 4th edn, 2007.
5 A. Petroczi and D. P. Naughton, Food Chem. Toxicol., 2009, 47,
298–302.
6 H. R. Pohl, H. G. Abadin and J. F. Risher, Neurotoxicity of
Cadmium, Lead, and Mercury, in Metal Ions in Life Sciences – vol.
1: Neurodegenerative Diseases and Metal Ions, ed. A. Sigel, H. Sigel
and R. K. O. Sigel, Wiley, West Sussex, 2006, pp. 395–426.
7 Chemosensors of Ion and Molecule Recognition – NATO Science
Series C, ed. J. P. Desvergne and A. W. Czarnik, Springer,
Netherlands, 1997.
20 It has been demonstrated that the shift value can be correlated to
the stability of the formed complex. (a) P. D. Beer, P. A. Gale and
G. Z. Chen, Coord. Chem. Rev., 1999, 185–186, 3–36;
(b) P. D. Beer, P. A. Gale and Z. Chen, Adv. Phys. Org. Chem.,
1998, 31, 1–84.
21 A. J. Bard and L. R. Faulkner, Electrochemical Methods, Wiley,
New York, 2001.
22 C. M. A. Brett and A. M. O. Brett, Electrochemistry: Principals,
Methods and Applications, Oxford University Press, London, 1993.
23 (a) C. F. Jensen, S. Deshmukh, H. J. Jakobsen, R. R. Inners and
P. D. Ellis, J. Am. Chem. Soc., 1981, 103, 3659–3666;
(b) P. F. Rodesiler and E. L. Amma, J. Chem. Soc., Chem.
Commun., 1982, 182–184; (c) G. K. Carson, P. A. W. Dean and
M. J. Stillman, Inorg. Chim. Acta, 1981, 56, 59–71.
24 M. Munakata, S. Kitagawa and F. Yagi, Inorg. Chem., 1986, 25,
964–970.
8 G. W. Gokel, W. M. Leevy and M. E. Weber, Chem. Rev., 2004,
104, 2723–2750.
25 J.-M. Saveant, Elements of Molecular and Biomolecular
´
9 (a) M. De Backer, M. Hureau, M. Depriester, A. Deletoille,
A. R. Sargent, P. B. Forshee and J. W. Sibert, J. Electroanal.
Chem., 2008, 612, 97–104; (b) A. J. Pearson and J. Hwang,
Electrochemistry: An Electrochemical Approach to Electron Transfer
Chemistry, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006,
78 ff.
c
This journal is The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2011
New J. Chem., 2011, 35, 709–715 715