Synthesis and Structures of Air-Stable Binuclear Hafnocene Perfluorobutanesulfonate
catalyst was filtered for the next cycle of reaction. From the
filtrate, after evaporation of the solvent, a pinkish solid mix-
ture was obtained. The residue was purified by short column
chromatography eluted with ethyl acetate/petroleum ether
(petroleum ether:ethyl acetate=5:1) and a colorless oil
(11a) was obtained; isolated yield: 96%. Indoles, enones
and nitroalkene are commercially available.
10793; c) R. H. Qiu, Z. G. Meng, S. F. Yin, X. X. Song,
N. Y. Tan, Y. B. Zhou, K. Yu, X. H. Xu, S. L. Luo, C. T.
Au, W. Y. Wong, ChemPlusChem 2012, 77, 404–410;
d) S. F. Yin, S. Shimada, Chem. Commun. 2009, 1136–
1138.
[4] a) B. Y. Lee, H. Y. Kwon, S. Y. Lee, S. J. Na, S. i. Han,
H. Yun, H. Lee, Y. W. Park, J. Am. Chem. Soc. 2005,
127, 3031–3037; b) W. Clegg, R. W. Harrington, M.
North, P. Villuendas, J. Org. Chem. 2010, 75, 6201–
6207; c) J. Melꢄndez, M. North, P. Villuendas, C.
Young, Dalton Trans. 2011, 40, 3885–3890.
Typical Procedure for the Mannich Reaction
Catalyzed by 4·6H2O
A well-ground mixture of b-naphthol (1.0 mmol), aldehyde
(1.0 mmol), amide derivative (1.2 mmol) and 4·6H2O
(0.02 mmol) was heated to reflux in ethanol until the reac-
tion was completed as indicated by TLC. After that, the
mixture was subject to silica gel column chromatography;
the product (16a) was obtained; isolated yield: 97%. After
the completion of column chromatography, the upper part
of the silica gel in the chromatography column was taken
out, THF (10 mL) was added to the catalyst and gel mixture.
The catalyst was collected by means of evaporation of the
solvent (THF) for the next cycle of reaction. Aldehydes,
amide derivative and b-naphthol are commercially available.
[5] a) R. H. Qiu, X. H. Xu, Y. H. Li, G. P. Zhang, L. L.
Shao, D. L. An, S. F. Yin, Chem. Commun. 2009, 1679–
1681; b) R. H. Qiu, G. P. Zhang, Y. Y. Zhu, X. H. Xu,
L. L. Shao, Y. H. Li, D. L. An, S. F. Yin, Chem. Eur. J.
2009, 15, 6488–6494.
´
[6] a) M. Hudlicky, A. E. Pavlath, (Eds.), Chemistry of or-
ganic fluorine compounds, ACS Monograph 187, ACS,
Washington DC, 1995, pp 979–1010; b) J. A. Gladysz,
M. Jurisch, Top. Curr. Chem. 2012, 308, 1–24.
[7] a) J. A. Gladysz, (Ed.), Handbook of Fluorous Chemis-
try, Wiley-VCH, Weinheim 2004, pp 13–15; b) N. K.
Terrett, Combinatorial Chemistry, Oxford University
Press, London, 1998, pp 68–69.
[8] a) M. Llorca, M. Farrꢄ, M. S. Tavano, B. Alonso, G. Ko-
remblit, D. Barcelꢅ, Environ. Pollut. 2012, 163, 158–
166; b) S. Fuentes, M. T. Colomina, P. Vicens, J. L.
Domingo, Toxicol. Lett. 2007, 171, 162–170.
[9] a) E. D. Oldham, W. Xie, A. M. Farnoud, J. Fiegel, H. J.
Lehmler, J. J. Phy. Chem. B: 2012, 116, 9999–10007;
b) C. Lau, J. L. Butenhoff, J. M. Rogers, Toxicol. Appl.
Pharm. 2004, 198, 231–241.
[10] T. K. Hollis, B. Bosnich, J. Am. Chem. Soc. 1995, 117,
4570–4581.
[11] G. J. Janz, R. P. T. Tomkins, in: Nonaqueous Electrolytes
Handbook, Academic Press, New York, 1972, pp 419–
443.
[12] S. Fukuzumi, N. Satoh, T. Okamoto, K. Yasui, T. Sue-
nobu, Y. Seko, M. Fujitsuka, O. Ito, J. Am. Chem. Soc.
2001, 123, 7756–7766.
[13] a) S. Fukuzumi, K. Ohkubo, J. Am. Chem. Soc. 2002,
124, 10270–10271; b) K. Ohkubo, S. C. Menon, A.
Orita, J. Otera, S. Fukuzumi, J. Org. Chem. 2003, 68,
4720–4726.
Acknowledgements
This work was supported by the NSFC (21172061, 21273068,
21273067, 21003040), the NSF of Hunan Province (10JJ1003,
11JJ5009), and the Fundamental Research Funds for the Cen-
tral Universities. All authors thank Profs. J. Otera and A.
Orita of Okayama University of Science for helpful discus-
sion. R. Qiu thanks the Prof. N. Kambe and Dr. T. Iwsakai
of Osaka University for helpful discussion and JSPS for a fel-
lowship.
References
[1] a) H. Yuan, W. J. Woo, H. Miyamura, S. Kobayashi, J.
Am. Chem. Soc. 2012, 134, 13970–13973; b) C. Li, S.
Cheng, M. Tjahjono, M. Schreyer, M. Garland, J. Am.
Chem. Soc. 2010, 132, 4589–4599; c) M. North, R. Pas-
quale, Angew. Chem. 2009, 121, 2990–2992; Angew.
Chem. Int. Ed. 2009, 48, 2946–2948; d) H. Yuan, W. J.
Woo, H. Miyamura, S. Kobayashi, Adv. Synth. Catal.
2012, 354, 2899–2904; e) M. P. Weberski Jr, C. Chen, M.
Delferro, T. J. Marks, Chem. Eur. J. 2012, 18, 10715–
10732.
[2] a) M. R. Radlauer, A. K. Buckley, L. M. Henling, T.
Agapie, J. Am. Chem. Soc. 2013, 135, 3784–3787; b) T.
Yasukawa, H. Miyamura, S. Kobayashi, J. Am. Chem.
Soc. 2012, 134, 16963–16966; c) M. H. Perez-Temprano,
J. A. Casares, P. Espinet, Chem. Eur. J. 2012, 18, 1864–
1884; d) Z. C. Wang, N. Dietl, R. Kretschmer, T.
Weiske, M. Schlangen, H. Schwarz, Angew. Chem.
2011, 123, 12559–12562; Angew. Chem. Int. Ed. 2011,
50, 12351–12354.
[14] D. T. Yazıcı, C. Bilgic, Surf. Interface Anal. 2010, 42,
959–962.
[15] a) D. E. Frantz, R. Fassler, C. S. Tomooka, E. M. Car-
reira, Acc. Chem. Res. 2000, 33, 373–381; b) Y. J. Mei,
P. Dissanayake, M. J. Allen, J. Am. Chem. Soc. 2010,
132, 12871–12873; c) P. Goodrich, C. Hardacre, C.
Paun, A. Ribeiro, S. Kennedy, M. J. V. Lourenco, H.
Manyar, C. A. Nieto de Castro, M. Besnea, V. I. Pꢆrvu-
lescu, Adv. Synth. Catal. 2011, 353, 995–1004; d) T. Ol-
levier, B. Plancq, Chem. Commun. 2012, 48, 2289–2291.
[16] a) H. Ishitani, Y. Yamashita, H. Shimizu, S. Kobayashi,
J. Am. Chem. Soc. 2000, 122, 5403–5404; b) G. Hou,
J. P. Yu, C. B. Yu, G. P. Wu, Z. W. Miao, Adv. Synth.
Catal. 2013, 355, 589–593; c) M. Rueping, B. J. Nacht-
sheim, W. Ieawsuwan, I. Atodiresei, Angew. Chem.
2011, 123, 6838–6853; Angew. Chem. Int. Ed. 2011, 50,
6706–6720.
[3] a) S. F. Yin, J. Maruyama, T. Yamashita, S. Shimada,
Angew. Chem. 2008, 120, 6692–6695; Angew. Chem.
Int. Ed. 2008, 47, 6590–6593; b) R. H. Qiu, Y. Chen,
S. F. Yin, X. H. Xu, C. T. Au, RSC Adv. 2012, 2, 10744–
Adv. Synth. Catal. 2013, 355, 2430 – 2440
ꢁ 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2439