B. R. Park et al. / Tetrahedron Letters 52 (2011) 1700–1704
1703
8, 643–645; (e) Kabalka, G. W.; Venkataiah, B. Tetrahedron Lett. 2005, 46, 7325–
7328.
3. For our recent synthesis of lactone derivatives, see: (a) Park, B. R.; Kim, K. H.;
Kim, J. N. Tetrahedron Lett. 2010, 51, 6568–6571; (b) Kim, K. H.; Lee, H. S.; Kim,
S. H.; Lee, K. Y.; Lee, J.-E.; Kim, J. N. Bull. Korean Chem. Soc. 2009, 30, 1012–1020;
(c) Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 1489–1492.
J = 8.7 Hz, 2H), 7.34–7.42 (m, 4H), 7.54 (t, J = 7.8 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H),
7.76 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d
51.18, 66.78, 95.06, 124.37, 124.50, 124.90, 125.70, 126.46, 128.43, 129.43,
129.68, 129.71, 130.49, 133.09, 133.90, 135.58, 137.35, 138.69, 140.23, 144.56,
155.38, 168.40, 198.79; ESIMS (positive ion) m/z 399 (M++H), 401 (M++H+2).
Anal. Calcd for C25H15ClO3: C, 75.29; H, 3.79. Found: C, 75.03; H, 4.05.
Compound 6c: 53%; white solid, mp 188–191 °C; IR (KBr) 1778, 1728,
4. For the synthesis of fused a-methylene-c-butyrolactones and butenolides, see:
(a) Chen, V. X.; Boyer, F.-D.; Rameau, C.; Retailleau, P.; Vors, J.-P.; Beau, J.-M.
Chem. Eur. J. 2010, 16, 13941–13945; (b) Rodriguez, C. M.; Martin, T.; Martin, V.
S. J. Org. Chem. 1996, 61, 8448–8452; (c) Barrero, A. F.; Oltra, J. E.; Alvarez, M.;
Rosales, A. J. Org. Chem. 2002, 67, 5461–5469; (d) Marshall, J. A.; Griot, C. A.;
Chobanian, H. R.; Myers, W. H. Org. Lett. 2010, 12, 4328–4331; (e) Matsuo, K.;
Shindo, M. Org. Lett. 2010, 12, 5346–5349; (f) Krawczyk, E.; Koprowski, M.;
Luczak, J. Tetrahedron: Asymmetry 2007, 18, 1780–1787; (g) Delaunay, J.;
Orliac-Le Moing, A.; Simonet, J. Tetrahedron 1988, 44, 7089–7094; (h) Demir, A.
S.; Gercek, Z.; Duygu, N.; Igdir, A. C.; Reis, O. Can. J. Chem. 1999, 77, 1336–1339;
(i) Wu, Q.-H.; Wang, C.-M.; Cheng, S.-G.; Gao, K. Tetrahedron Lett. 2004, 45,
8855–8858; (j) Wu, Q.-H.; Liu, C.-M.; Chen, Y.-J.; Gao, K. Helv. Chim. Acta 2006,
89, 915–922.
1275 cmÀ1 1H NMR (CDCl3, 300 MHz)
; d 1.19 (t, J = 7.5 Hz, 3H), 2.59 (q,
J = 7.5 Hz, 2H), 4.50 (s, 1H), 6.01 (s, 1H), 6.37 (s, 1H), 6.64 (d, J = 7.8 Hz, 2H), 7.05
(d, J = 7.8 Hz, 2H), 7.36–7.48 (m, 4H), 7.51 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz,
1H), 7.74 (t, J = 7.5 Hz, 1H), 7.89 (d, J = 7.5 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d
15.10, 28.26, 51.18, 67.04, 95.25, 123.99, 124.30, 124.67, 125.88, 126.64,
127.69, 129.07, 129.10, 129.39, 129.42, 133.12, 135.90, 137.09, 137.25, 140.19,
143.63, 145.21, 156.08, 168.62, 199.26; ESIMS (positive ion) m/z 393 (M++H).
Anal. Calcd for C27H20O3: C, 82.63; H, 5.14. Found: C, 82.71; H, 5.02.
Compound 6d: 58% (major/minor, 3:2); white solid, mp 226–229 °C; IR (KBr)
1778, 1727, 1219 cmÀ1 1H NMR (major, CDCl3, 300 MHz) d 1.52 (s, 3H), 2.08 (s,
;
3H), 4.47 (dd, J = 2.7 and 2.4 Hz, 1H), 6.09 (d, J = 2.7 Hz, 1H), 6.14 (br s, 1H), 6.45
(d, J = 2.4 Hz, 1H), 6.99 (br s, 2H), 7.33–7.91 (m, 8H); 1H NMR (minor, CDCl3,
300 MHz) d 1.55 (s, 3H), 2.10 (s, 3H), 4.59 (dd, J = 3.3 and 3.0 Hz, 1H), 5.85 (d,
J = 3.3 Hz, 1H), 6.24 (d, J = 3.0 Hz, 1H), 6.52 (br s, 1H), 6.96 (br s, 2H), 7.33–7.91
(m, 8H); 13C NMR (major + minor, CDCl3, 75 MHz) d 20.97 (2C), 22.03, 22.66,
51.32, 51.53, 67.47, 67.50, 93.36, 96.22, 123.59, 124.38, 124.43, 124.72, 124.76,
125.11, 125.34, 127.29, 127.57, 128.55, 128.81, 128.86, 129.04, 129.09 (2C),
129.46, 131.09, 132.06, 132.68, 133.50, 134.83, 135.17, 135.40, 135.57, 136.00,
136.58 (2C), 136.61, 136.82, 137.30, 138.75, 139.17, 145.84, 146.30, 156.06,
159.86, 168.53, 169.01, 199.03, 200.56 (four carbons are overlapped); ESIMS
(positive ion) m/z 393 (M++H). Anal. Calcd for C27H20O3: C, 82.63; H, 5.14.
Found: C, 82.86; H, 5.43.
5. For the synthesis of indenoindene and its derivatives, see: (a) Paisdor, B.; Kuck,
D. J. Org. Chem. 1991, 56, 4753–4759; (b) Harig, M.; Neumann, B.; Stammler, H.-
G.; Kuck, D. Eur. J. Org. Chem. 2004, 2381–2397; (c) Harig, M.; Kuck, D. Eur. J.
Org. Chem. 2006, 1647–1655; (d) Kuck, D.; Schuster, A.; Fusco, C.; Fiorentino,
M.; Curci, R. J. Am. Chem. Soc. 1994, 116, 2375–2381; (e) Ramaiah, D.; Kumar, S.
A.; Asokan, C. V.; Mathew, T.; Das, S.; Rath, N. P.; George, M. V. J. Org. Chem.
1996, 61, 5468–5473; (f) Slemon, C.; Macel, B.; Trifonov, L.; Vaugeois, J. WO 03/
064501 A1, 2003; Chem. Abstr. 2003, 139, 165073.; (g) Kuck, D. Chem. Rev. 2006,
106, 4885–4925; (h) Kuck, D.; Seifert, M. Chem. Ber. 1992, 125, 1461–1469.
6. For our contribution to the synthesis of indenoindene derivatives, see: (a) Kim,
K. H.; Lee, H. S.; Kim, S. H.; Kim, S. H.; Kim, J. N. Chem. Eur. J. 2010, 16, 2375–
2380; (b) Lee, C. G.; Lee, K. Y.; Lee, S.; Kim, J. N. Tetrahedron 2005, 61, 1493–
1499.
7. For the examples of butterfly conformation NNRTIs, see: (a) Mertens, A.; Zilch,
H.; Konig, B.; Schafer, W.; Poll, T.; Kampe, W.; Seidel, H.; Leser, U.; Leinert, H. J.
Med. Chem. 1993, 36, 2526–2535; (b) Wang, J.; Kang, X.; Kuntz, I. D.; Kollman, P.
A. J. Med. Chem. 2005, 48, 2432–2444. Further references were cited in Ref. 6a.
8. Typical procedure for the synthesis of 4a:3c To a stirred solution of ninhydrin
(231 mg, 1.3 mmol) and cinnamyl bromide 2a (255 mg, 1.0 mmol) in aqueous
THF (1:1, 3.0 mL) was added indium powder (148 mg, 1.3 mmol), and the
reaction mixture was stirred at room temperature for 2 h under N2
atmosphere. After the usual aqueous extractive workup and removal of
Compound 6e: 94%; white solid, mp 260–262 °C; IR (KBr) 1778, 1727,
1263 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.37 (s, 3H), 4.47 (dd, J = 2.4 and
;
2.1 Hz, 1H), 5.98 (d, J = 2.1 Hz, 1H), 6.35 (d, J = 2.4 Hz, 1H), 6.73–6.77 (m, 2H),
7.18–7.24 (m, 6H), 7.52 (t, J = 7.8 Hz, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.76 (t,
J = 7.8 Hz, 1H), 7.89 (d, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 21.47, 50.89,
67.20, 95.43, 123.85, 124.03, 124.72, 126.12, 126.65, 127.71, 128.20, 129.12,
129.20, 130.49, 133.24, 136.12, 137.11, 137.39, 139.59, 140.16, 145.14, 156.05,
168.62, 199.31; ESIMS (positive ion) m/z 379 (M++H). Anal. Calcd for C26H18O3:
C, 82.52; H, 4.79. Found: C, 82.33; H, 4.58.
Compound 6f: 81%; white solid, mp 266–268 °C; IR (KBr) 1768, 1730,
1262 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.29 (s, 3H), 2.36 (s, 3H), 4.45 (s,
;
1H), 5.97 (s, 1H), 6.35 (s, 1H), 6.62 (d, J = 6.0 Hz, 2H), 7.03 (d, J = 6.0 Hz, 2H),
7.16–7.26 (m, 3H), 7.51 (t, J = 6.3 Hz, 1H), 7.60 (d, J = 6.3 Hz, 1H), 7.74 (t,
J = 6.3 Hz, 1H), 7.88 (d, J = 6.3 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 20.97, 21.46,
50.84, 66.94, 95.43, 123.80, 123.98, 124.68, 126.11, 126.62, 128.95, 129.07 (2C),
130.42, 133.19, 136.19, 137.07, 137.20, 137.35, 137.44, 139.53, 145.26, 156.19,
168.70, 199.41; ESIMS (positive ion) m/z 393 (M++H). Anal. Calcd for C27H20O3:
C, 82.63; H, 5.14. Found: C, 82.60; H, 5.45.
solvent afforded crude
c-hydroxy ester 3a. To the crude 3a in CH2Cl2
(2.0 mL) was added p-TsOH (19 mg, 0.1 mmol), and the reaction mixture was
stirred at room temperature for 12 h. After the usual aqueous extractive
workup and column chromatographic purification process (hexanes/EtOAc/
CH2Cl2, 5:1:1) compound 4a was obtained as a white solid, 234 mg (77%).3c
Other compounds were synthesized similarly, and the spectroscopic data of
unknown compounds 4b and 4c are as follows.
Compound 6g: 28%; white solid, mp 232–234 °C; IR (KBr) 1777, 1727,
Compound 4b: 75%; white solid, mp 146–148 °C; IR (KBr) 1789, 1755, 1724,
1263 cmÀ1 1H NMR (CDCl3, 300 MHz) d 3.79 (s, 3H), 4.44 (dd, J = 2.4 and
;
1226 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 2.19 (s, 3H), 4.60 (dd, J = 3.6 and
2.1 Hz, 1H), 5.97 (d, J = 2.1 Hz, 1H), 6.36 (d, J = 2.4 Hz, 1H), 6.72–6.78 (m, 2H),
6.91–6.96 (m, 2H), 7.20–7.29 (m, 4H), 7.54 (t, J = 7.8 Hz, 1H), 7.60 (d, J = 7.8 Hz,
1H), 7.76 (t, J = 7.8 Hz, 1H), 7.90 (d, J = 7.8 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d
50.56, 55.62, 67.32, 95.73, 110.74, 115.77, 123.77, 124.79, 125.13, 126.60,
127.81, 128.26, 129.21 (2C), 132.27, 133.31, 136.27, 137.10, 139.89, 146.46,
155.77, 160.90, 168.64, 199.20; ESIMS (positive ion) m/z 395 (M++H). Anal. Calcd
for C26H18O4: C, 79.17; H, 4.60. Found: C, 79.44; H, 4.56.
3.3 Hz, 1H), 5.63 (d, J = 3.3 Hz, 1H), 6.59 (d, J = 3.6 Hz, 1H), 6.88 (d, J = 8.4 Hz,
2H), 6.93 (d, J = 8.4 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.76 (t, J = 7.5 Hz, 1H), 7.84
(t, J = 7.5 Hz, 1H), 8.00 (d, J = 7.5 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 20.95,
52.86, 84.11, 123.63, 123.71, 124.64, 128.68, 129.22, 129.48, 135.41, 136.67,
137.09, 138.51, 140.74, 141.04, 168.49, 194.13, 194.30; ESIMS (positive ion) m/
z 319 (M++H). Anal. Calcd for C20H14O4: C, 75.46; H, 4.43. Found: C, 75.75; H,
4.54.
Compound 10: 92%; white solid, mp 140–142 °C; IR (KBr) 3464, 1780, 1764,
Compound 4c: 71%; white solid, mp 123–125 °C; IR (KBr) 1788, 1755, 1725,
1729, 1287 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.49 (dd, J = 13.8 and 7.2 Hz, 1H),
;
1514, 1255 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 3.68 (s, 3H), 4.59 (dd, J = 3.6 and
2.83 (dd, J = 13.8 and 7.8 Hz, 1H), 3.39 (s, OH), 5.07 (dd, J = 3.6 and 3.3 Hz, 1H),
5.16 (d, J = 17.4 Hz, 1H), 5.23 (d, J = 10.2 Hz, 1H), 5.53 (d, J = 3.3 Hz, 1H), 5.76–
5.90 (m, 1H), 6.53 (d, J = 3.6 Hz, 1H), 6.72–7.00 (m, 5H), 7.11–7.21 (m, 2H), 7.51–
7.57 (m, 2H); 13C NMR (CDCl3, 75 MHz) d 46.29, 50.17, 77.18, 96.09, 122.08,
122.71, 123.96, 127.46, 127.95 (2C), 129.15, 129.72, 131.40, 133.01, 134.34,
135.38, 137.37, 153.05, 169.48, 197.51; ESIMS (positive ion) m/z 347 (M++H).
Anal. Calcd for C22H18O4: C, 76.29; H, 5.24. Found: C, 76.47; H, 5.42.
3.0 Hz, 1H), 5.63 (d, J = 3.0 Hz, 1H), 6.58 (d, J = 3.6 Hz, 1H), 6.65 (d, J = 8.7 Hz,
2H), 6.92 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.78 (t, J = 7.5 Hz, 1H), 7.85
(t, J = 7.5 Hz, 1H), 8.01 (d, J = 7.5 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 52.58,
55.11, 84.17, 114.14, 123.44, 123.60, 123.69, 124.55, 130.54, 135.59, 136.67,
137.15, 140.68, 141.04, 159.51, 168.46, 194.14, 194.44; ESIMS (positive ion) m/
z 335 (M++H). Anal. Calcd for C20H14O5: C, 71.85; H, 4.22. Found: C, 71.79; H,
4.52.
Compound 11: 72% (cis/trans, 1:1); white solid, mp 248–250 °C (decomp.); IR
Typical procedure for the synthesis of 6a: A mixture of compound 4a (152 mg,
0.5 mmol) and H2SO4 (245 mg, 2.5 mmol) in benzene (2.0 mL) was heated to
reflux for 9 h under nitrogen atmosphere. After the usual aqueous extractive
workup and column chromatographic purification process (hexanes/EtOAc/
CH2Cl2, 17:1:4) compound 6a was obtained as a white solid, 173 mg (95%).
Other compounds were synthesized similarly, and the spectroscopic data of 6a-
g are as follows. Compounds 10–12 were prepared as shown in Scheme 2 and
Scheme 3, and the spectroscopic data of 10–12 are also noted herewith.
Compound 6a: 95%; white solid, mp 227–229 °C; IR (KBr) 1778, 1727,
(KBr) 1779, 1726, 1228 cmÀ1 1H NMR (CDCl3, 300 MHz) d 4.47 (t, J = 0.6 Hz,
;
0.5H), 4.69 (t, J = 0.6 Hz, 0.5H), 5.52–5.70 (m, 2H), 5.59 (d, J = 3.3 Hz, 0.5H), 5.64
(d, J = 3.3 Hz, 0.5H), 6.57 (d, J = 3.9 Hz, 0.5H), 6.62 (d, J = 3.9 Hz, 0.5H), 6.70 (d,
J = 11.7 Hz, 0.5H), 6.88–7.57 (m, 9.5H), 7.62 (d, J = 7.8 Hz, 0.5H), 7.78 (d,
J = 7.8 Hz, 0.5H); 13C NMR (CDCl3, 75 MHz) d 55.23, 57.18, 88.36, 89.42, 120.11,
123.23, 123.58, 123.73, 123.89, 123.96, 124.24, 124.79, 125.94, 127.49, 128.15,
128.21, 128.31 (2C), 129.05, 129.18, 129.23, 129.37, 130.80, 131.45, 132.16,
132.27, 132.37, 132.75, 133.72, 133.88, 136.01, 136.03, 136.58, 146.63, 148.52,
169.43 (2C), 198.04, 198.42 (one carbon is overlapped); ESIMS (positive ion) m/z
329 (M++H). Anal. Calcd for C22H16O3: C, 80.47; H, 4.91. Found: C, 80.61; H, 5.03.
Compound 12: 81%; white solid, mp 207–209 °C; IR (KBr) 1767, 1726,
1219 cmÀ1 1H NMR (CDCl3, 300 MHz) d 4.51 (dd, J = 2.7 and 2.1 Hz, 1H), 6.01
;
(d, J = 2.1 Hz, 1H), 6.38 (d, J = 2.7 Hz, 1H), 6.70–6.77 (m, 2H), 7.19–7.28 (m, 3H),
7.34–7.46 (m, 4H), 7.53 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 7.5 Hz, 1H), 7.75 (t,
J = 7.5 Hz, 1H), 7.90 (d, J = 7.5 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 51.19, 67.29,
95.18, 124.08, 124.37, 124.74, 125.88, 126.61, 127.76, 128.21, 129.14, 129.19,
129.48, 129.49, 133.20, 135.84, 137.16, 140.05, 140.25, 145.03, 155.96, 168.53,
199.18; ESIMS (positive ion) m/z 365 (M++H). Anal. Calcd for C25H16O3: C,
82.40; H, 4.43. Found: C, 82.65; H, 4.71.
1286 cmÀ1 1H NMR (CDCl3, 300 MHz) d 2.14 (s, 3H), 6.85–6.88 (m, 2H), 7.25–
;
7.26 (m, 3H), 7.33–7.36 (m, 1H), 7.43–7.52 (m, 3H), 7.58–7.66 (m, 2H), 7.75 (d,
J = 8.1 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H); 13C NMR (CDCl3, 75 MHz) d 9.79, 63.78,
96.73, 121.84, 124.59, 125.34, 125.43, 127.31, 127.93, 128.44, 128.88, 129.13,
129.27, 130.97, 131.77, 133.45, 136.71, 137.06, 150.87, 158.06, 158.24, 174.96,
197.17; ESIMS (positive ion) m/z 365 (M++H). Anal. Calcd for C25H16O3: C, 82.40;
H, 4.43. Found: C, 82.59; H, 4.56.
Compound 6b: 87%; white solid, mp 260–262 °C; IR (KBr) 1779, 1728,
1218 cmÀ1
;
1H NMR (CDCl3, 300 MHz) d 4.51 (dd, J = 2.4 and 2.1 Hz, 1H), 6.03
9. For the similar Friedel–Crafts type reaction of ketone and arenes under strong
acid conditions, see: (a) Sai, K. K. S.; Esteves, P. M.; da Penha, E. T.; Klumpp, D. A.
(d, J = 2.1 Hz, 1H), 6.39 (d, J = 2.4 Hz, 1H), 6.68 (d, J = 8.7 Hz, 2H), 7.19 (d,