-1
˜
(30). IR (CH2Cl2) n (cm ): 3063 (w), 2221 (s), 1668 (s), 1602 (s),
1333 (s), 665 (m), 629 (m). HRMS (MALDI) for C16H11BrNO,
[M+H]+ (312.0024) found: 312.0032.
Pergamon: Oxford, 2008; Vol. 19, pp 176; (b) B. A. Keay, P. W. Dibble,
Comprehensive Heterocyclic Chemistry II A. R. Katritzky, C. W. Rees,
E. F. V. Scriven, ed.; Elsevier: Oxford, 1997; Vol. 2, pp 395; (c) X. L.
Hou, H. Y. Cheung, T. Y. Hon, P. L. Kwan, T. H. Lo, S. Y. T. Tong and
H. N. C. Wong, Tetrahedron, 1998, 54, 1955; (d) B. A. Keay, Chem. Soc.
Rev., 1999, 28, 209; (e) T. L. Gilchrist, J. Chem. Soc., Perkin Trans. 1,
1999, 2849.
2 (a) B. H. Lipshutz, Chem. Rev., 1986, 86, 795; (b) H. N. C. Wong, P. Yu
and C.-Y. Yick, Pure Appl. Chem., 1999, 71, 1041; (c) H.-K. Lee, K.-F.
Chan, C.-W. Hui, H.-K. Yim, X.-W. Wu and H. N. C. Wong, Pure Appl.
Chem., 2005, 77, 139; (d) H. Heaney, Natural Products Chemistry K.
Nakanishi, Ed.; Kodansha: Tokyo, 1974, pp 297.
(E)-4-(3-(4-Methoxyphenyl)-3-oxoprop-1-enyl)benzonitrile (2p)13e
The compound 2p was yielded as lemon yellow solid (1.96 g, 75%)
according to the procedure of the reported literature. H-NMR
.
1
(400 MHz, CDCl3, 25 ◦C) d (ppm): 8.06–8.01 (m, 2H), 7.78–7.67
(m, 5H), 7.61 (d, 1H, J = 15.6 Hz), 7.02–6.97 (m, 2H), 3.90 (s, 3H).
13C-NMR (100 MHz, CDCl3, 25 ◦C) d (ppm): 187.8, 163.8, 141.2,
139.4, 132.6, 130.9, 130.5, 128.6, 125.0, 118.4, 114.0, 113.2, 55.5.
MS (20 eV, EI) m/z (%): 263 [M]+ (100), 135 (49), 108 (7).
3 For recent reviews, see: (a) S. F. Kirsch, Org. Biomol. Chem., 2006, 4,
2076; (b) R. C. D. Brown, Angew. Chem., Int. Ed., 2005, 44, 850; (c) S.
Cacchi, J. Organomet. Chem., 1999, 576, 42.
4 For recent examples, see: (a) L. Melzig, C. B. Rauhut and P. Knochel,
Chem. Commun., 2009, 3536; (b) K. Sne´garoff, J.-M. L’Helgoual’ch,
G. Bentabed-Ababsa, T. T. Nguyen, F. Chevallier, M. Yonehara, M.
Uchiyama, A. Derdour and F. Mongin, Chem.–Eur. J., 2009, 15, 10280;
for selected reviews, see: (c) H. Ila, O. Baron, A. J. Wagner and P.
Knochel, Chem. Commun., 2006, 583; (d) Handbook of functionalized
organometallics, P. Knochel, Ed.; Wiley-VCH: Weinheim, 2005.
5 G. Minetto, L. F. Raveglia, A. Sega and M. Taddei, Eur. J. Org. Chem.,
2005, 5277 and references cited therein.
6 For selected examples, see: (a) G. Mross, E. Holtz and P. Langer, J.
Org. Chem., 2006, 71, 8045; (b) F. Feist, Ber. Dtsch. Chem. Ges., 1902,
35, 1537; (c) E. Be´nary, Ber. Dtsch. Chem. Ges., 1911, 44, 489.
7 For selected examples starting from allenyl ketones, see: (a) A. S.
Dudnik and V. Gevorgyan, Angew. Chem., Int. Ed., 2007, 46, 5195;
(b) A. S. K. Hashmi, Angew. Chem., Int. Ed. Engl., 1995, 34, 1581; for
examples from alkynyl ketone, see: (c) A. S. K. Hashmi, L. Schwarz, J.-
H. Choi and T. M. Frost, Angew. Chem., Int. Ed., 2000, 39, 2285; (d) J.
A. Marshall and G. S. Bartley, J. Org. Chem., 1994, 59, 7169; (e) S.
Ma, J. Zhang and L. Lu, Chem.–Eur. J., 2003, 9, 2447; (f) for examples
from alkynyl epoxide, see: A. S. K. Hashmi and P. Sinha, Adv. Synth.
Catal., 2004, 346, 432; (g) for electrophilic cyclization, see: A. Sniady,
K. A. Wheeler and R. Dembinski, Org. Lett., 2005, 7, 1769; (h) for
examples from alkynyl alcohols, see: Y. Liu, F. Song, Z. Song, M. Liu
and B. Yan, Org. Lett., 2005, 7, 5409; (i) for examples from alkynyl
cyclopropyl ketones, see: J. Zhang and H.-G. Schmalz, Angew. Chem.,
Int. Ed., 2006, 45, 6704; for examples from other substrates, see: (j) L.
Peng, X. Zhang, M. Ma and J. Wang, Angew. Chem., Int. Ed., 2007,
46, 1905; (k) M. Zhang, H.-F. Jiang, H. Neumann, M. Beller and P. H.
Dixneuf, Angew. Chem., Int. Ed., 2009, 48, 1681.
8 For recent selected examples of other tetrasubstituted furans using 2-
(1-alkynyl)-2-alken-1-ones as substrates catalyzed by transition metal,
see: (a) R. Liu and J. Zhang, Chem.–Eur. J., 2009, 15, 9303; (b) Y. Xiao
and J. Zhang, Adv. Synth. Catal., 2009, 351, 617; (c) Y. Xiao and J.
Zhang, Chem. Commun., 2009, 3594; (d) F. Liu and J. Zhang, Angew.
Chem., Int. Ed., 2009, 48, 5505; (e) J. Gao, X. Xhao, Y. Yu and J.
Zhang, Chem.–Eur. J., 2010, 16, 456; (f) Y. Zhang, Z. Chen, Y. Xiao
and J. Zhang, Chem.–Eur. J., 2009, 15, 5208.
9 For the examples of trisubstituted furans bearing three aryl groups, see:
R. U. Braun and T. J. J. Mu¨ller, Synthesis, 2004, 2391.
10 T.-T. Kao, S. Syu and W. Lin, Org. Lett., 2010, 12, 3066. In this work,
the addition sequence of reactants has no influence on the results of the
formation of furans.
(E)-4-(3-Cyclohexyl-3-oxoprop-1-enyl)benzonitrile (2r)13e
. The
compound 2r was yielded as white solid (0.21 g, 20%) according
to the procedure of the reported literature. mp.: 93.8–94.6 ◦C. 1H-
NMR (400 MHz, CDCl3, 25 ◦C) d (ppm): 7.69–7.61 (m, 4H), 7.55
(d, 1H, J = 16.0 Hz), 6.88 (d, 1H, J = 16.0 Hz), 2.68–2.58 (m, 1H),
1.95–1.78 (m, 4H), 1.75–1.66◦(m, 1H), 1.49–1.17 (m, 5H). 13C-
NMR (100 MHz, CDCl3, 25 C) d (ppm): 202.32, 139.6, 139.1,
132.6, 128.5, 127.5, 118.3, 113.3, 48.8, 28.5, 25.8, 25.6. MS (20 eV,
EI) m/z (%): 240 [M+1]+ (100), 184 (14), 171 (35), 156 (58), 130
-1
˜
(11), 83 (5). IR (CH2Cl2) n (cm ): 3063 (w), 2982 (w), 2944 (w),
2223 (m), 1661 (s), 1613 (s), 1510 (m). HRMS (EI) for C16H18NO,
[M+H]+ (240.1388) found: 240.1398.
((1Z,3E)-1,4-Bis(benzoyloxy)-1,4-diphenylbuta-1,3-dien-2-yl)-
tributylphosphonium chloride (8). A dry and nitrogen-flushed 10-
mL Schlenk flask, equipped with a magnetic stirring bar and a
septum, was charged with a solution of 3a (128.0 mL, 2.2 equiv),
Bu3P (137.0 mL, 1.1 equiv), Et3N (84.0 mL, 1.2 equiv) and
2u (118.1 mg, 0.5 mmol) in dry THF (2.5 mL). The reaction
mixture was stirred for 10 min at rt. Thereafter, the solvent
was removed by evaporation in vacuo. Purification by simply
washing with pentane and ethyl acetate, then recrystallization
(dichloromethane/hexanes) furnishes the adduct 8 and NEt3·HCl.
1H-NMR (500 MHz, CDCl3, 25 ◦C) d (ppm): 7.81 (d, 2H, J =
7.9 Hz), 7.74 (d, 2H, J = 7.9 Hz), 7.61 (quartet, 2H, J = 7.3 Hz),
7.49–7.34 (m, 9 Hz), 7.30–7.21 (m, 5H), 6.81 (d, 1H, 4.5 Hz), 2.68–
2.54 (m, 6H), 1.32–1.27 (m, 12H), 0.75 (t, 9H, 7.2 Hz). 13C-NMR
(125 MHz, CDCl3, 25 ◦C) d (ppm): 163.4, 162.8, 162.2, 150.9 (d,
J = 8 Hz), 135.2, 134.3, 133.2 (d, J = 7 Hz), 132.9, 131.1, 129.9,
129.7, 129.4, 129.2, 128.6 (d, J = 3 Hz), 128.5, 127.7, 127.5, 126.7,
124.9, 107.9 (d, J = 3 Hz), 103.8 (d, J = 58 Hz), 24.0 (d, J =
3 Hz), 23.9 (d, J = 5 Hz), 21.1 (d, J = 38 Hz), 13.1. 31P-NMR (200
MHz, CDCl3, 25 ◦C) d (ppm): 32.7. MS (20 eV, ESI) m/z (%): 648
[M-34]+ (37), 647 [M-35]+ (100). HRMS (FAB) for C42H48O4P, [M
- Cl]+ (647.3285) found: 647.3290. X-Ray analysis: CCDC 792216.
11 The acidity of benzylic position, which is decided by the substituent
on the aromatic ring (R1), indeed has influence on the formation of the
corresponding phosphorus ylide 4.
12 The formation of the compound 8 was clearly observed without the
formation of 1ua when excess of3a (2.2 equiv) was used according to our
protocol. Notably, it is the first time that the formation of compound
8, in addition to that of 1ua, can confirm the existence of the Wittig
intermediate 9. (CCDC number of the compound 8: 792216).
13 (a) K. R. Gopidas, B. B. Lohray, S. Rajadurai, P. K. Das and M. V.
George, J. Org. Chem., 1987, 52, 2831; (b) B. J. Morrison and O. C.
Musgrave, J. Chem. Soc., Perkin Trans. 1, 2002, 1944; (c) S. Kajikawa,
Y. Noiri, H. Shudo, H. Nishino and K. Kurosawa, Synthesis, 1998,
1457; (d) H. Perrier, C. Bayly, F. Laliberte, Z. Huang, R. Rasori, A.
Robichaud, Y. Girard and D. Macdonald, Bioorg. Med. Chem. Lett.,
1999, 9, 323; (e) S. Sebti, A. Solhy, R. Tahir, S. Boulaajaj, J. A. Mayoral,
J. M. Fraile, A. Kossir and H. Oumimoun, Tetrahedron Lett., 2001, 42,
7953.
Acknowledgements
We thank the National Science Council of the Republic of China
(NSC Grant No. 99-2113-M-003-004-MY2) and National Taiwan
Normal University (99T3030-6) for financial support.
References
1 For recent reviews, see: (a) X. L. Hou, Z. Yang, H. N. C. Wong,
Progress in Heterocyclic ChemistryG. W. Gribble, J. A. Joule, ed.;
2106 | Org. Biomol. Chem., 2011, 9, 2098–2106
This journal is
The Royal Society of Chemistry 2011
©