360
J. B. Campbell et al.
LETTER
1.0 M solution in THF, 2.20 mmol) was added dropwise.
(3) (a) Zhou, P.; Natale, N. R. Bioorg. Med. Chem. Lett. 1997,
7, 2455. (b) Gajewski, M. P.; Beall, H.; Schnieder, M.;
Stranahan, S. M.; Mosher, M. D.; Rider, K. C.; Natale, N. R.
Bioorg. Med. Chem. Lett. 2009, 19, 4067.
(4) (a) Wang, W. B.; Roskamp, E. J. J. Org. Chem. 1992, 57,
6101. (b) Wang, W. B.; Restituyo, J. A.; Roskamp, E. J.
Tetrahedron Lett. 1993, 34, 7217. (c) Smith, L. A.; Wang,
W. B.; Barnell-Curty, C.; Roskamp, E. J. Synlett 1993, 850.
(5) Yoon, N. M.; Sim, T. B. Synlett 1994, 827.
(6) Bradley, D. C.; Ghotra, J.; Hart, F. A. J. Chem. Soc., Dalton
Trans. 1973, 1021.
(7) Jingqing, R.; Guangxian, X. Sci. Sin., Ser. B 1987, 30, 337.
(8) Tsay, C.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc.
2010, 132, 13975.
(9) Bochkarev, M. N.; Fedorova, E. A.; Radkov, Y. F.;
Khorshev, S. Y.; Kalina, G. S.; Razuvaev, G. A.
J. Organomet. Chem. 1983, 258, C29.
(10) Bradley, D. C.; Ghotra, J.; Hart, F. A.; Hursthouse, M. B.;
Raithby, P. R. J. Chem. Soc., Dalton Trans. 1977, 1166.
(11) The lanthanide reagents were prepared according to the
procedure of Bradley et al.6 Briefly, to a suspension of anhyd
lanthanum chloride12 in THF at r.t. was added dropwise 3
equiv of LiHMDS (Aldrich) as a 1.0 M solution in THF.
Following completion of the addition, the mixture was
warmed to 50 ¡C for 15 min and then cooled to the
prescribed temperature for use in the amidation reactions.
Other lanthanide HMDS complexes were prepared by an
analogous procedure.
(12) (a) Preparation of anhyd lanthanide halides can be capricious
as cited in ref. 12b. We found no difference in reactivity of
the Ln[HMDS]3 complexes using lanthanide chlorides
prepared by the Taylor procedure compared with using salts
treated by drying of the commercially available LnCl3⋅7H2O
salts under high vacuum at 140 °C overnight (b) Taylor, M.
D. Chem. Rev. 1962, 62, 503.
The suspension was placed in a 50 °C bath and stirred 15
min. The heating bath was removed and the suspension
allowed to cool back to ambient temperature over 30 min.
Morpholine (0.065 mL, 0.73 mmol) was then added as a neat
liquid and the mixture stirred 15 min at ambient temperature.
The reaction flask was placed in an ice-bath and stirred 15
min to equilibrate. Methyl benzoate (0.082 mL, 0.66 mmol)
was added dropwise as a neat liquid, and the reaction was
stirred for 1 h in the ice bath. MeOH (1 mL) was added to
quench the reaction. The mixture was poured directly onto a
short plug of silica gel using EtOAc washes (5 × 5 mL) for
elution. The combined extracts were concentrated, and the
residual green oil was chromatographed [Chromatotron
radial chromatography, silica gel, elution solvent EtOAc–
hexanes (1:5)]. The combined eluent was concentrated to
provide 0.126 g of a clear, colorless oil (ca. 99% yield). 1H
NMR (300 MHz, CDCl3): d = 3.33 (br s, 4 H), 3.59 (br s, 4
H), 7.387.46 (m, 5 H). 13C NMR (75 MHz, CDCl3): d =
40.31, 66.04, 126.97, 128.41, 129.55, 135.57, 166.90. MS:
m/z = 192 [M+].
(19) Most of the products are simple amides previously described
in the literature and/or commercially available. Thus,
products were characterized by NMR (1H, 13C) and MS
comparing data to authentic samples or data acquired from
the literature.
Selected Examples with Data
N-Benzylbenzamide (4b)
1H NMR (300 MHz, CDCl3): d = 4.48 (d, 2 H, J = 6.02 Hz),
7.23 (m, 1 H), 7.31 (m, 4 H), 7.51 (m, 3 H), 7.88 (m, 2 H),
9.04 (t, 1 H, J = 5.70 Hz). 13C NMR (75 MHz, CDCl3):
d = 42.59, 126.73, 127.19, 127.25, 128.29, 128.33, 131.26,
134.33, 139.72, 166.19. MS: m/z = 212 [M+].20a
(4-Bromophenyl)(morpholino)methanone (4e)
1H NMR (300 MHz, CDCl3): d = 2.49 (br s, 4 H), 3.58 (br s,
(13) Lanthanide triflates have been reported to promote the
addition of amines to nitriles. See: Forsberg, J. H.; Spaziano,
V. T.; Balasubramanian, T. M.; Liu, G. K.; Kinsley, S. A.;
Duckworth, C. A.; Poteruca, J. J.; Brown, P. S.; Miller, J. L.
J. Org. Chem. 1987, 52, 1017.
(14) Sasai, H.; Arai, S.; Shibasaki, M. J. Org. Chem. 1994, 59,
2661.
(15) LeRoux, E.; Liang, Y.; Storz, M. P.; Anwander, R. J. Am.
Chem. Soc. 2010, 132, 16368.
4 H), 7.36 (d, 2 H, J = 8.68), 7.64 (d, 2 H, J = 8.58). 13
C
NMR (75 MHz, CDCl3): d = 66.03, 122.99, 129.29, 131.47,
134.75, 168.09.20b
(4-Methoxyphenyl)(morpholino)methanone (4f)
1H NMR (300 MHz, CDCl3): d = 3.48 (br s, 4 H), 3.82 (br s,
4 H), 3.79 (s, 3 H), 6.98 (d, 2 H, J = 6.68 Hz), 7.38 (d, 2 H,
J = 6.76). 13C NMR (75 MHz, CDCl3): d = 55.25, 66.11,
113.66, 127.47, 129.13, 160.24, 169.02. MS: m/z = 206
[M+].20c
(16) Johnson, C. D. Acc. Chem. Res. 1993, 26, 476.
(17) (a) Burgi, H. B.; Dunitz, J. P.; Lehn, J. M.; Wipff, G.
Tetrahedron 1974, 30, 1563. (b) Bartlett, G. J.; Choudary,
A.; Raines, R. T.; Woolfson, D. N. Nat. Chem. Biol. 2010, 6,
615.
Morpholino(pyridin-3-yl)methanone (4h)
1H NMR (300 MHz, CDCl3): d = 3.64 (br s, 8 H), 7.49 (m, 1
H), 7.85 (m, 1 H), 8.64 (m, 2 H). 13C NMR (75 MHz,
CDCl3): d = 66.04, 123.59, 131.48, 134.96, 147.76, 150.55,
166.90. MS: m/z = 192 [M+].20d
(18) Procedure for Conversion of Esters into Amides Using
Sm[HMDS]3 Synthesis of Amide 4a
(20) (a) Ren, W.; Yamane, M. J. Org. Chem. 2010, 75, 3017.
(b) Li, J.; Xu, F.; Zhang, Y.; Shen, Q. J. Org. Chem. 2009,
74, 2575. (c) Tillack, A.; Rudloff, I.; Beller, M. Eur. J. Org.
Chem. 2001, 523. (d) Deguest, G.; Devineau, A.; Bischoff,
L.; Fruit, C.; Marsais, F. Org. Lett. 2006, 8, 5889.
Anhyd samarium chloride (0.280 g, 0.73 mmol) was dried
under high vacuum at 140 °C for 15 h, then cooled to
ambient temperature under argon. The residue was
suspended in anhyd THF (4 mL) and LiHMDS (2.2 mL of a
Synlett 2011, No. 3, 357–360 © Thieme Stuttgart · New York