Please do not adjust margins
ChemComm
Page 4 of 6
COMMUNICATION
Journal Name
2d) upon dehydration. Often alkylation of indole is marred
with byproduct, bis(3-indolyl) methane (5) which
a
DOI: 10.1039/D0CC07169B
originates from the Michael addition of an indole to 4 (Path
B).25 Interestingly, our optimized reaction conditions
supressed the formation of 5, offering the alkylated indoles
as the sole product. Since, the azo group in the catalyst
backbone can be reversibly converted to the hydrazo
moiety, the borrowed hydrogens from the alcohol
substrates remain stored in the ligand backbone. This
hydrazo will hydrogenate further the in situ generated
vinylogous imine 4 to produce C-3 alkylated indole (Path A).
To prove unambiguously that the alcohol was the source of
hydrogen during the hydrogenation of 4, we took 1 equiv of
benzaldehyde and benzyl alcohol each, and the product 2a
was isolated in 66% yield (section 5c, ESI). This suggests that
4 forms the direct reaction of the aldehyde with indole and
the borrowed hydrogens from benzyl alcohol
dehydrogenation, hydrogenates it to form the alkylated
indole. To further examine whether the activated indole
ring has an influence on the reactivity, we started with an
N-methylated indole, so that no deprotonation by a base is
research fellowships.
1.
2.
T. Kagata, S. Saito, H. Shigemori, A. Ohsaki, H.
Ishiyama, T. Kubota and J. i. Kobayashi, J. Nat. Prod.,
2006, 69, 1517-1521.
T. Jiang, K. L. Kuhen, K. Wolff, H. Yin, K. Bieza, J.
Caldwell, B. Bursulaya, T. Y.-H. Wu and Y. He, Bioorg.
Med. Chem. Lett., 2006, 16, 2105-2108.
G. Bartoli, G. Bencivenni and R. Dalpozzo, Chem. Soc.
Rev., 2010, 39, 4449-4465.
Y. Hui, Q. Zhang, J. Jiang, L. Lin, X. Liu and X. Feng, J.
Org. Chem., 2009, 74, 6878-6880.
Y. Qian, G. Ma, A. Lv, H.-L. Zhu, J. Zhao and V. H. Rawal,
Chem. Commun., 2010, 46, 3004-3006.
M. Yamaguchi, R. Hagiwara, K. Gayama, K. Suzuki, Y.
Sato, H. Konishi and K. Manabe, J. Org. Chem., 2020,
85, 10902-10912.
3.
4.
5.
6.
7.
S. Cacchi and G. Fabrizi, Chem. Rev., 2005, 105, 2873-
2920.
probable.
A
competition reaction was performed
8.
9.
R. H. Crabtree, Chem. Rev., 2017, 117, 9228-9246.
T. Irrgang and R. Kempe, Chem. Rev., 2019, 119, 2524-
2549.
considering 1-H indole and its N-methyl analogue with 1
equiv of benzyl alcohol that yielded only 3-benzyl-1H-
indole, 2a in 62% yield. This result implicates that the base
deprotonates the indole and makes it activated further for
the electrophilic substitution reaction (Scheme 3a).
10.
11.
12.
13.
B. G. Reed-Berendt, K. Polidano and L. C. Morrill, Org.
Biomol. Chem., 2019, 17, 1595-1607.
C. Gunanathan and D. Milstein, Science, 2013, 341,
249-260.
S. Whitney, R. Grigg, A. Derrick and A. Keep, Org. Lett.,
2007, 9, 3299-3302.
C. Chaudhari, S. M. A. H. Siddiki, K. Kon, A. Tomita, Y.
Tai and K.-i. Shimizu, Catal. Sci. Technol., 2014, 4,
1064-1069.
a)
1 (5 mol%), KOtBu
Ph
OH
+
5
+
+
+
N
N
H
Toluene, 110 oC, 12 h
N
N
H
1 mmol
1 mmol
1 mmol
62%
Not observed Trace
b)
c)
D
D/H
1 (5 mol%), KOtBu
Toluene, 110 oC, 12 h
D
D
+
N
H
Ph
OH
N
30 %
14.
15.
16.
17.
18.
19.
N. Lebrasseur and I. Larrosa, J. Am. Chem. Soc., 2008,
130, 2926-2927.
N. Biswas, R. Sharma and D. Srimani, Adv. Synth.
Catal., 2020, 362, 2902-2910.
S. Imm, S. Bähn, A. Tillack, K. Mevius, L. Neubert and
M. Beller, Chem. – Eur. J., 2010, 16, 2705-2709.
S. M. A. H. Siddiki, K. Kon and K.-i. Shimizu, Chem. –
Eur. J., 2013, 19, 14416-14419.
G. Di Gregorio, M. Mari, F. Bartoccini and G. Piersanti,
J. Org. Chem., 2017, 82, 8769-8775.
H
1 (5 mol%), KOtBu
Toluene, 110 oC, 12 h
+
OH
No reaction
N
H
Scheme 3: Control experiments for the synthesis of C-3
alkylated indole.
To establish that the reaction is truly a borrowing hydrogenation
catalysis, we studied the reaction further with d2-benzyl alcohol.
Significant amount of deuterium incorporation (30%) in the final
product 2a affirms the process to be BH in nature (Scheme 3b).
To ensure further, that no alkylation happens through the
formation of carbocation, we chose t-butanol as the alkylating
substrate and observed only starting indole remained intact
(Scheme 3c). Notably, under our reaction conditions, the C3-
alkylation is exclusive and no formation of N-alkylated product is
detected.
M. B. Dambatta, K. Polidano, A. D. Northey, J. M. J.
Williams and L. C. Morrill, ChemSusChem, 2019, 12,
2345-2349.
20.
C. Seck, M. D. Mbaye, S. Gaillard and J.-L. Renaud, Adv.
Synth. Catal., 2018, 360, 4640-4645.
21.
22.
V. P. Ananikov, ACS Catal., 2015, 5, 1964-1971.
A. K. Bains, A. Kundu, S. Yadav and D. Adhikari, ACS
Catal., 2019, 9, 9051-9059.
In conclusion, we described herein an efficient nickel catalyst
that can effectively conduct the selective C3-alkylation of 1H-
indoles with a variety of alcohols. The ease of the process
prompted us further to perform C3-alkylation starting from 2-(2-
aminophenyl) ethanol, rather than prefabricated indoles. The
radical mechanism for the reaction is distinctly different from
multiple other catalysts explored in this direction.
23.
24.
K.-i. Fujita, K. Yamamoto and R. Yamaguchi, Org. Lett.,
2002, 4, 2691-2694.
S. Shimura, H. Miura, K. Wada, S. Hosokawa, S.
Yamazoe and M. Inoue, Catal. Sci. Technol., 2011, 1,
1340-1346.
M. Shiri, M. A. Zolfigol, H. G. Kruger and Z.
Tanbakouchian, Chem. Rev., 2010, 110, 2250-2293.
25.
We thank SERB (DST), India (Grant No. ECR/2017/001764) for
financial support and IISER Mohali for seed funding. Authors
further thank IISER Mohali central facility for analytical data.
4 | Chem. Commun., 2020, 56, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins