Journal of the American Chemical Society
ARTICLE
alkynes with (pinacolato)boron hydride and catalyzed by NHCꢀRh
complexes, see: (c) Khramov, D. M.; Rosen, E. L.; Er, J. A. V.; Vu, P. D.;
Lynch, V. M.; Bielawski, C. W. Tetrahedron 2008, 64, 6853–6862.
(24) He, X.; Hartwig, J. F. J. Am. Chem. Soc. 1996, 118, 1696–1702.
(25) (a) Pereira, S.; Srebnik, M. Organometallics 1995,
14, 3127–3128. (b) Wang, Y. D.; Kimball, G.; Prashad, A. S.; Wang,
Y. Tetrahedron Lett. 2005, 46, 8777–8780. (c) PraveenGanesh, N.;
d’Hondt, S.; Chavant, P. Y. J. Org. Chem. 2007, 72, 4510–4514.
(26) (a) Brown, H. C.; Bhat, N. G. Tetrahedron Lett. 1988,
29, 21–24. (b) Cole, T. E.; Quintanilla, R.; Rodewald, S. Organometallics
1991, 10, 3777–3781. (c) Itami, K.; Kamei, T.; Yoshida, J-i. J. Am. Chem.
Soc. 2003, 125, 14670–14671.
(27) Morrill, C.; Grubbs, R. H. J. Org. Chem. 2003, 68, 6031–6034.
(28) (a) Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009,
131, 3160–3161. (b) Reference 8. (c) Meek, S. J.; O'Brien, R. V.;
Llaveria, J.; Schrock, R. R.; Hoveyda, A. H. Nature 2011, 471, 461–466.
(29) Guzman-Martinez, A.; Hoveyda, A. H. J. Am. Chem. Soc. 2010,
132, 10634–10637.
(30) For NHCꢀCu-catalyzed pinacolatoboron conjugate additions
to R,β-unsaturated carbonyls, see: (a) O’Brien, J. M.; Lee, K-s.;
Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10630–10633. (b) Park,
J. K.; Lackey, H. H.; Rexford, M. D.; Kovnir, K.; Shatruk, M.; McQuade,
D. T. Org. Lett. 2010, 12, 5008–5011.
(31) (a) Laitar, D. S.; M€uller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005,
127, 17196–17197. (b) Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organo-
metallics 2006, 25, 2405–2408.
(32) (a) See ref 28a. The NHCꢀCu-catalyzed reactions of the
corresponding trisubstituted allylic carbonates that bear an electron-
rich aryl substituent, however, result in the formation of benzylic CꢀB
bonds; see: (b) ref 29.
(33) NHCꢀCu-catalyzed reactions of B2(pin)2 (with MeOH pre-
sent) with alkyl,aryl-substituted internal alkynes afford β-boryl products;
high efficiency is observed with methyl-substituted substrates. See: Kim,
H. R.; Jung, I. G.; Yoo, K.; Jang, K.; Lee, E. S.; Yun, J.; Son, S. U. Chem.
Commun. 2010, 46, 758–760.
(34) It may be argued that CuꢀB addition might be reversible but
the NHCꢀCu-boronate remains coordinated to the same alkyne
substrate. Although evidence to address such a possibility is not yet
available, the fact that the presence of a large excess of a second, and
nearly identical, alkyne (e.g., 23 in Scheme 6) does not lead to significant
cross-over, suggests otherwise.
(35) Although initial studies suggest that the CuꢀB addition step
is the product-determining step, kinetic measurements indicate that
reaction of MeOH with the derived vinylꢀcopper intermediate is
energetically significant as well. Thus, kH/kD values of 2.7 and 3.6
have been measured for reactions of terminal alkyne 2 (cf. Table 1
and entry 1, Table 2) and 5-chloro-1-pentyne (Scheme 6) performed
in the presence of NHCꢀCu complex 10 (see Table 1). See the
Supporting Information for details.
approximation. For quantitative descriptions of softness, see: (a) Yang,
W.; Parr, R. G. Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 6723–6726.
(b) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. Rev. 2003,
103, 1793–1874.
(42) (a) Damoun, S.; Van de Woude, G.; Mꢁendez, F.; Geerlings, P.
J. Phys. Chem. A 1997, 101, 886–893. (b) Chandra, A. K.; Geerlings, P.;
Nguyen, M. T. J. Org. Chem. 1997, 62, 6417–6419. (c) Chen, H.-T.; Ho,
J.-J. J. Phys. Chem. A 2003, 107, 7643–7649.
(43) An alternative reaction manifold might be suggested that
involves the intermediacy of Cu(I) hydrides and accounts for the
observed site selectivities. The presence of MeOH in the mixture
would thus cause the formation of reduction byproducts (i.e., net
hydrogenation). In none of the reactions reported herein, however,
were such byproducts observed, leading us to put forward the modes
of CuꢀB addition illustrated in Scheme 7. For an example of a Cu-
catalyzed hydroboration reaction for which the intermediacy of
CuꢀH has been proposed, see: (a) Noh, D.; Chea, H.; Ju, J.; Yun,
J. Angew. Chem., Int. Ed. 2009, 48, 6062–6064. For a CuꢀH-catalyzed
1,2-addition/transmetalation process involving acetylenic esters,
affording alkenylboronates, see: (b) Lipshutz, B. H.; Boskovic,
Z. V.; Aue, D. H. Angew. Chem., Int. Ed. 2008, 47, 10183–10186.
(44) For studies indicating the metallacyclopropene character of
Cuꢀalkyne complexes, see: (a) Nakamura, E.; Mori, S.; Nakamura, M.;
Morokuma, K. J. Am. Chem. Soc. 1997, 119, 4887–4899. (b) Nakamura,
E.; Mori, S. Angew. Chem., Int. Ed. 2000, 39, 3750–3771.
(45) (a) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71–C79.
(b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939–2947.
(46) Catalytic hydroborations can be performed with nearly similar
efficiency and selectivity in tetrahydrofuran or toluene.
(47) Attempts to examine transformations of allylic esters, such as an
acetate or a tosylate, were thwarted by substrate instability or generation
of complex product mixtures.
(48) For computational studies regarding the connection between
substrate coordination to distortion of d10 metal complexes [Cu(I),
Ag(I), and Au(I)] from linearity, see: (a) Carvajal, M. A.; Novoa, J. J.;
Alvarez, S. J. Am. Chem. Soc. 2004, 126, 1465–1477. These investigations
indicate that the barrier to distortion in Cu(I) complexes, much of which
is due to the bending in LꢀCuꢀL0 systems, is diminished with the more
strongly donating ligands. For examples of distortion from linearity in an
NHCꢀmetalꢀligand bond and related discussions, see: (b) Poater, A.;
Ragone, F.; Correa, A.; Szadkowska, A.; Barbasiewicz, M.; Grela, K.;
Cavallo, L. Chem.—Eur. J. 2010, 16, 14354–14364. For examples of
structural distortion as a result of trans-influence, see: (c) L€ovqvist,
K. C.; Wendt, O. F.; Leipoldt, J. G. Acta Chem. Scand. 1996,
50, 1069–1073. (d) Wendt, O. F.; Elding, L. I. J. Chem. Soc., Dalton
Trans. 1997, 4725–4731. (e) Fernꢁandez, D.; García-Seijo, I.; Sevillano,
P.; Castineiras, A.; García-Fernꢁandez, M. E. Inorg. Chim. Acta 2005,
358, 2575–2584.
(49) The near-linear nature of an NHCꢀCuꢀB(pin) is supported
by a previously reported X-ray structure (CꢀCuꢀB = 168°); see (a) ref
31a. For X-ray structures on a linear NHCꢀAgꢀCl complex, see:
(b) Lee, K-s.; Hoveyda, A. H. J. Org. Chem. 2009, 74, 4455–4462. For
X-ray structure data regarding a planar bent Cu(I) complex, see:
(c) Shapiro, N. D.; Toste, F. D. Proc. Nat. Acad. Sci. U.S.A. 2008,
105, 2779–2782.
(36) For a review of the Tolman electronic parameter (TEP) for
phosphine ligands, see: (a) Tolman, C. A. Chem. Rev. 1977, 77, 313–
348. The TEP values for NHC ligands were obtained from: (b) Kelly,
R. A., III; Clavier, H.; Giudice, S.; Scott, N. M.; Stevens, E. D.; Bordner,
J.; Samardjiev, I.; Hoff, C. D.; Cavallo, L.; Nolan, S. P. Organometallics
2008, 27, 202–210.
(37) Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165–195.
(38) It is unclear, however, whether the presence of an electron-
withdrawing group within the alkyne substrate results in an increase in
reaction rate.
(39) For a discussion of various effects involved in interactions
between two molecules, see: Ess, D. H.; Jones, G. O.; Houk, K. N.
Adv. Synth. Catal. 2006, 348, 2337–2361and references cited therein.
(40) For a general discussion of secondary orbital interactions and
their significance in predicting selectivity, see: Ginsburg, D. Tetrahedron
1983, 39, 2095–2135.
(50) The (pinacolato)boron ligand can impose a strong trans
influence as well, as illustrated in a number of previous reports. See:
(a) Zhu, J.; Lin, Z.; Marder, T. B. Inorg. Chem. 2005, 44, 9384–9390.
(b) Zhao, H.; Lin, Z.; Marder, T. B. J. Am. Chem. Soc. 2006,
128, 15637–15643. (c) Zhao, H.; Dang, L.; Marder, T. B.; Lin, Z.
J. Am. Chem. Soc. 2008, 130, 5586–5594. (d) Dang, L.; Lin, Z.; Marder,
T. B. Chem. Commun. 2009, 3987–3995. The B-based ligand, how-
ever, is a constant structural feature in all the systems under investiga-
tion; it is the variation in the electronic and steric attributes caused by
the change in the identity of the NHC ligand that gives rise to the
observed differences in site selectivity. Accordingly, our discussions
are focused on the impact caused by the latter component of the
catalyst structure.
(41) The local softness parameters were calculated from Hirshfeld
population analyses (HPA) of the optimized structures of aryl alkynes as
described in the Supporting Information, following a finite difference
7870
dx.doi.org/10.1021/ja2007643 |J. Am. Chem. Soc. 2011, 133, 7859–7871