N-phenyl-N-(R-methylbenzyl)amide to a range of R,β-
unsaturated 4-methoxyphenyl esters is described.
addition of the lithium amide)12 as the major components
was observed. Variation of the electronics of the ester
group revealed that upon conjugate addition of lithium
amide 2 to 4-methoxyphenyl crotonate 6, the competing
1,2-addition reaction was completely suppressed and β-
amino ester 9 was produced as a single product. Further
experimentation showed that the optimum procedure in-
volved use of 1.1 equiv of lithium amide 2, which allowed
the isolation of β-amino ester 9 as a single diastereoisomer
in 80% yield (Scheme 1).
N-Arylation of (R)-R-methylbenzylamine (99% ee)8
according to a modification of the procedure described
by Larock9 gave (R)-N-phenyl-N-(R-methylbenzyl)amine
1 in 59% yield and >99% ee.10 Deprotonation of 1 with
BuLi in THF at ꢀ78 °C gave a pale yellow solution of
lithium (R)-N-phenyl-N-(R-methylbenzyl)amide 2. Addi-
tion of tert-butyl crotonate 3 (1.0 equiv) to the lithium
amide solution (2.0 equiv) gave only returned starting
material, while under identical conditions addition of
methyl crotonate 4 resulted in incomplete conversion
(34%)11 to β-amino ester 7 as a single diastereoisomer
(>99:1 dr). However, when phenyl crotonate was empo-
lyed, complete conversion to a mixture of products con-
taining a 75:25 mixture of β-amino ester 8 and R,β-
unsaturated amide 10 (resulting from competing 1,2-
Scheme 1
(4) For selected examples from this laboratory, see: Davies, S. G.;
Kelly, R. J.; Price Mortimer, A. J. Chem. Commun. 2003, 2132. Davies,
S. G.; Burke, A. J.; Garner, A. C.; McCarthy, T. D.; Roberts, P. M.;
Smith, A. D.; Rodriguez-Solla, H.; Vickers, R. J. Org. Biomol. Chem.
2004, 2, 1387. Davies, S. G.; Haggitt, J. R.; Ichihara, O.; Kelly, R. J.;
Leech, M. A.; Price Mortimer, A. J.; Roberts, P. M.; Smith, A. D. Org.
Biomol. Chem. 2004, 2, 2630. Abraham, E.; Candela-Lena, J. I.; Davies,
S. G.; Georgiou, M.; Nicholson, R. L.; Roberts, P. M.; Russell, A. J.;
ꢀ
ꢀ
Sanchez-Fernandez, E. M.; Smith, A. D.; Thomson, J. E. Tetrahedron:
Asymmetry 2007, 18, 2510. Abraham, E.; Davies, S. G.; Millican, N. L.;
Nicholson, R. L.; Roberts, P. M.; Smith, A. D. Org. Biomol. Chem. 2008,
6, 1655. Abraham, E.; Brock, E. A.; Candela-Lena, J. I.; Davies, S. G.;
Georgiou, M.; Nicholson, R. L.; Perkins, J. H.; Roberts, P. M.; Russell,
a Reactions were performed using 1.0 equiv of R,β-unsaturated ester
and 2.0 equiv of lithium amide 2. bReaction was performed using 1.0
equiv of R,β-unsaturated ester 9 and 1.1 equiv of lithium amide 2.
ꢀ
ꢀ
A. J.; Sanchez-Fernandez, E. M.; Scott, P. M.; Smith, A. D.; Thomson,
J. E. Org. Biomol. Chem. 2008, 6, 1665. Davies, S. G.; Fletcher, A. M.;
Roberts, P. M.; Smith, A. D. Tetrahedron 2009, 65, 10192. Davies, S. G.;
Hughes, D. G.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Smith, A. D.;
Thomson, J. E.; Williams, O. M. H. Synlett 2010, 567. Davies, S. G.;
Ichihara, O.; Roberts, P. M.; Thomson, J. E. Tetrahedron 2011, 67, 216.
Bagal, S. K.; Davies, S. G.; Fletcher, A. M.; Lee, J. A.; Roberts, P. M.;
Scott, P. M.; Thomson, J. E. Tetrahedron Lett. 2011, 52, 2216.
(5) For selected examples from this laboratory, see: Davies, S. G.;
Hermann, G. J.; Sweet, M. J.; Smith, A. D. Chem. Commun. 2004, 1128.
Cailleau, T.; Cooke, J. W. B.; Davies, S. G.; Ling, K. B.; Naylor, A.;
Nicholson, R. L.; Price, P. D.; Roberts, P. M.; Russell, A. J.; Smith,
A. D.; Thomson, J. E. Org. Biomol. Chem. 2007, 5, 3922. Aye, Y.;
Davies, S. G.; Garner, A. C.; Roberts, P. M.; Smith, A. D.; Thomson,
J. E. Org. Biomol. Chem. 2008, 6, 2195. Abraham, E.; Davies, S. G.;
Docherty, A. J.; Ling, K. B.; Roberts, P. M.; Russell, A. J.; Thomson,
J. E.; Toms, S. M. Tetrahedron:Asymmetry 2008, 19, 1356. Davies, S. G.;
Durbin, M. J.; Hartman, S. J. S.; Matsuno, A.; Roberts, P. M.; Russell,
A. J.; Smith, A. D.; Thomson, J. E.; Toms, S. M. Tetrahedron:
Asymmetry 2008, 19, 2870. Davies, S. G.; Durbin, M. J.; Goddard,
E. C.; Kelly, P. M.; Kurosawa, W.; Lee, J. A.; Nicholson, R. L.; Price,
P. D.; Roberts, P. M.; Russell, A. J.; Scott, P. M.; Smith, A. D. Org.
Biomol. Chem. 2009, 7, 761. Davies, S. G.; Fletcher, A. M.; Hermann,
G. J.; Poce, G.; Roberts, P. M.; Smith, A. D.; Sweet, M. J.; Thomson,
J. E. Tetrahedron: Asymmetry 2010, 21, 1635.
The relative configuration within β-amino ester 9 was
unambiguously established via single crystal X-ray diffrac-
tion analysis,13 with the absolute (R,R)-configuration
being assigned from the known configuration of the (R)-
R-methylbenzyl stereocenter (Figure 1). This analysis re-
veals that the facial bias elicited by lithium (R)-N-phenyl-
N-(R-methylbenzyl)amide 2 in its conjugate addition to
R,β-unsaturated esters is consistent with that of other
members of this class of lithium amide14 [e.g., lithium N-
benzyl-N-(R-methylbenzyl)amide6 and lithium N-allyl-
N-(R-methylbenzyl)amide].15 On this basis, the absolute
(R,R)-configurations within β-amino esters 7 and 8 were
confidently assigned. In support of these assumptions, the
configurations within β-amino esters 8 and 9 were corre-
lated to that of the known dihydroquinolin-4-one 13.
Attempted treatment of either 8 or 9 with polyphosphoric
(6) Davies, S. G.; Smith, A. D.; Price, P. D. Tetrahedron: Asymmetry
2005, 16, 2833.
(12) An authentic sample of R,β-unsaturated amide 10 was prepared
(in 83% yield) via acylation of (R)-N-phenyl-N-(R-methylbenzyl)amine
1 with crotonoyl chloride.
(13) Crystallographic data (excluding structure factors) have been
deposited with the Cambridge Crystallographic Data Centre as supple-
mentary publication number CCDC 805285.
(7) For selected examples, see:Okamoto, S.;Iwakubo, M.; Kobayashi,
K.; Sato, F. J. Am. Chem. Soc. 1997, 119, 6984. Bull, S. D.; Davies, S. G.;
Roberts, P. M.; Savory, E. D.; Smith, A. D. Tetrahedron 2002, 58, 4629.
Williams, P. G.; Yoshida, W. Y.; Quon, M. K.; Moore, R. E.; Paul, V. J.
J. Nat. Prod. 2003, 66, 651. Bentley, S. A.; Davies, S. G.; Lee, J. A.;
Roberts, P. M.; Russell, A. J.; Thomson, J. E.; Toms, S. M. Tetrahedron
2010, 66, 4604. Brock, E. A.; Davies, S. G.; Lee, J. A.; Roberts, P. M.;
Thomson, J. E. Org. Lett. 2011, 13, 1594.
(8) Enantiopure (R)-R-methylbenzylamine (99% ee) is commercially
available.
(9) Liu, Z.; Larock, R. C. J. Org. Chem. 2006, 71, 3198.
(10) The enantiomeric purity of (R)-N-phenyl-N-(R-methylbenzyl)-
amine 1 was determined by chiral HPLC analysis for which the authors
would like to thank Darren J. Dixon and Pavol Jakubec.
(11) The reaction conversion was calculated from the ratio of excess
(R)-N-phenyl-N-(R-methylbenzyl)amine 1 to β-amino ester 7 due to the
volatility of methyl crotonate 4.
(14) Costello, J. F.; Davies, S. G.; Ichihara, O. Tetrahedron: Asym-
metry 1994, 5, 1999.
(15) Davies, S. G.; Fenwick, D. R. J. Chem. Soc., Chem. Commun.
1995, 109. Davies, S. G.; Hedgecock, C. J. R.; McKenna, J. M. Tetra-
hedron: Asymmetry 1995, 6, 827. Davies, S. G.; Hedgecock, C. J. R.;
McKenna, J. M. Tetrahedron: Asymmetry 1995, 6, 2507. Davies, S. G.;
Fenwick, D. R. Chem. Commun. 1997, 565. Davies, S. G.; Fenwick,
D. R.; Ichihara, O. Tetrahedron: Asymmetry 1997, 8, 3387.
(16) (a) Paradisi, M. P.; Romeo., A. J. Chem. Soc., Perkin Trans. 1
1977, 596. (b) Liu, J.; Wang, Y.; Sun, Y.; Marshall, D.; Miao, S.; Tonn,
G.; Anders, P.; Tocker, J.; Tang, H. L.; Medina, J. Bioorg. Med. Chem.
Lett. 2009, 19, 6840.
Org. Lett., Vol. 13, No. 10, 2011
2545