Journal of the American Chemical Society
COMMUNICATION
Scheme 1. Possible Reaction Mechanism
129, 9300. (d) Black, D. A.; Beveridge, R. E.; Arndtsen, B. A. J. Org.
Chem. 2008, 73, 1906. (e) Fernꢀandez-Ibꢀa~nez, M. A.; Maciꢀa, B.; Pizzuti,
ꢀ
M. G.Minnaard, A. J.; Feringa, B. L. Angew. Chem., Int. Ed. 2009, 48, 9339.
(f) Nadeau, C.; Aly, S.; Belyk, K. J. Am. Chem. Soc. 2011, 133, 2878.
(6) The hydrogenation of pyridine to give the fully saturated
product, piperidine, is catalyzed by a number of heterogeneous catalysts.
For examples, see: (a) Hamilton, T. S.; Adams, R. J. Am. Chem. Soc. 1928,
50, 2260. (b) Adkins, H.; Kuick, L. F.; Farlow, M.; Wojcik, B. J. Am.
Chem. Soc. 1934, 56, 2425. (c) Freifelder, M.; Stone, G. R. J. Org. Chem.
1961, 26, 3805. (d) Lunn, G.; Sansone, E. B. J. Org. Chem. 1986, 51, 513.
(e) Mꢀevellec, V.; Roucoux, A. Inorg. Chim. Acta 2004, 357, 3099.
(f) Takasaki, M.; Motoyama, Y.; Higashi, K.; Yoon, S.-H.; Mochida, I.;
Nagashima, H. Chem.—Asian J. 2007, 2, 1524. (g) Park, I. S.; Kwon,
M. S.; Kang, K. Y.; Lee, J. S.; Park, J. Adv. Synth. Catal. 2007, 349, 2039.
(h) Falini, G.; Gualandi, A.; Savoia, D. Synthesis 2009, 2440.
(i) Motoyama, Y.; Takasaki, M.; Yoon, S.-H.; Mochida, I.; Nagashima, H.
Org. Lett. 2009, 11, 5042. (j) Buil, M. L.; Esteruelas, M. A.; Niembro, S.;
Olivꢀan, M.; Orzechowski, L.; Pelayo, C.; Vallribera, A. Organometallics
2010, 29, 4375. For hydrogenation of substituted pyridines, see:
(k) Freifelder, M. In Practical Catalytic Hydrogenation; Wiley Interscience:
New York, 1971; p 582. (l) Glorius, F. Org. Biomol. Chem. 2005, 3, 4171.
(7) For heterogeneous catalyst conditions, see: Cook, N. C.; Lyons,
J. E. J. Am. Chem. Soc. 1966, 88, 3396.
introduction of the boryl and silyl groups is achieved efficiently
by a palladium catalyst bearing PCy3 as a ligand. Mechanistic
details of the reaction and synthetic applications of the silylated
N-boryldihydropyridines are now under investigation in our
laboratory.
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental details and char-
b
acterization data for the products. This material is available free of
(8) For homogeneous catalyst conditions, see: (a) Hao, L.; Harrod,
J. F.; Lebuis, A.-M.; Mu, Y.; Shu, R.; Samuel, E.; Woo, H.-G. Angew.
Chem., Int. Ed. 1998, 37, 3126. (b) Harrod, J. F.; Shu, R.; Woo, H. G.;
Samuel, E. Can. J. Chem. 2001, 79, 1075. (c) Gutsulyak, D. V.; van der
Est, A.; Nikonov, G. I. Angew. Chem., Int. Ed. 2011, 50, 1384.
(9) For mechanistic studies, see: (a) Iwata, M.; Okazaki, M.; Tobita,
H. Chem. Commun. 2003, 2744. (b) Iwata, M.; Okazaki, M.; Tobita, H.
Organometallics 2006, 25, 6115.
’ AUTHOR INFORMATION
Corresponding Author
ohmura@sbchem.kyoto-u.ac.jp; suginome@sbchem.kyoto-u.ac.jp
(10) For recent contributions on silaboration, see: (a) Ohmura, T.;
Oshima, K.; Suginome, M. Chem. Commun. 2008, 1416. (b) Ohmura, T.;
Masuda, K.; Suginome, M. J. Am. Chem. Soc. 2008, 130, 1526.
(c) Ohmura, T.; Taniguchi, H.; Suginome, M. Org. Lett. 2009, 11, 2880.
(d) Ohmura, T.; Oshima, K.; Taniguchi, H.; Suginome, M. J. Am. Chem.
Soc. 2010,132, 12194. For recent reviews, see:(e) Beletskaya, I.; Moberg,
C. Chem. Rev. 2006, 106, 2320. (f) Burks, H. E.; Morken, J. P. Chem.
Commun. 2007, 4717. (g) Ohmura, T.; Suginome, M. Bull. Chem. Soc.
Jpn. 2009, 82, 29.
’ ACKNOWLEDGMENT
K.O. acknowledges JSPS for fellowship support.
’ REFERENCES
(1) For recent examples, see: (a) Lewis, J. C.; Bergman, R. G.;
Ellman, J. A. J. Am. Chem. Soc. 2007, 129, 5332. (b) Kawashima, T.;
Takao, T.; Suzuki, H. J. Am. Chem. Soc. 2007, 129, 11006. (c) Kanyiva,
K. S.; Nakao, Y.; Hiyama, T. Angew. Chem., Int. Ed. 2007, 46, 8872.
(d) Nakao, Y.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 2448.
(e) Berman, A. M.; Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am.
Chem. Soc. 2008, 130, 14926. (f) Tsai, C.-C.; Shih, W.-C.; Fang, C.-H.;
Ong, T.-G.; Yap, G. P. A. J. Am. Chem. Soc. 2010, 132, 11887. (g) Seiple,
I. B.; Su, S.; Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.;
Baran, P. S. J. Am. Chem. Soc. 2010, 132, 13194. (h) Barluenga, J.; Lonzi,
G.; Riesgo, L.; Lꢀopez, L. A.; Tomꢀas, M. J. Am. Chem. Soc. 2010,
132, 13200. (i) Wang, H.; Wang, Y.; Peng, C.; Zhang, J.; Zhu, Q.
J. Am. Chem. Soc. 2010, 132, 13217. (j) Nakao, Y.; Yamada, Y.; Kashihara,
N.; Hiyama, T. J. Am. Chem. Soc. 2010, 132, 13666. (k) Li, B.-J.; Shi, Z.-J.
Chem. Sci. 2011, 2, 488.
(11) Kisanga, P.; Widenhoefer, R. A. J. Am. Chem. Soc. 2000,
122, 10017.
(12) Dihydropyridines 3, 5, 6, and 7 are air- and moisture-sensitive.
Isolation of some dihydropyridines derived from pyridines with low
boiling points was carried out as follows: After silaboration, the reaction
mixture was treated with activated charcoal. Filtration of the mixture
under a nitrogen atmosphere resulted in a palladium-free colorless
solution. The solution was concentrated in vacuo to remove volatiles,
including the starting pyridines. For details of the experimental proce-
dure, see the Supporting Information.
(13) Ohmura, T.; Masuda, K.; Furukawa, H.; Suginome, M. Orga-
nometallics 2007, 26, 1291.
(14) For examples of synthetic applications of 1,4-bis(trimethylsilyl)-
1,4-dihydropyridines synthesized by the method reported in ref 2, see:
(a) Tsuge, O.; Kanemasa, S.; Naritomi, T.; Tanaka, J. Chem. Lett. 1984, 1255.
(b) Tsuge, O.; Kanemasa, S.; Naritomi, T.; Tanaka, J. Bull. Chem. Soc. Jpn.
1987, 60, 1497. (c) Smith, E. D.; Fꢀevrier, F. C.;Comins, D. L.Org. Lett. 2006,
8, 179.
(15) In the reaction of 6 with PhCHO, formation of PhCH2OB(pin)
(10) was confirmed (eq 4). However, the boron compound formed in
the reaction of 3 with PhCHO (eqs 2 and 3) was not 10 and has not been
assigned to date.
(16) For the oxidative addition of SiꢀB bonds to Pt(0) to form
SiꢀPtꢀB complexes, see: Sagawa, T.; Asano, Y.; Ozawa, F Organome-
tallics 2002, 21, 5879.
(17) For the insertion of methyl vinyl ketone into PdꢀB bonds to
form allylpalladium complexes bearing a boryloxy group, see: Onozawa,
S.; Tanaka, M. Organometallics 2001, 20, 2956.
(2) For the reduction of pyridine with Li in the presence of Me3SiCl
to give 1,4-bis(trimethylsilyl)-1,4-dihydropyridine, see: Sulzbach, R. A.
J. Organomet. Chem. 1970, 24, 307.
(3) Evans, J. C. W.; Allen, C. F. H. Org. Synth. 1938, 18, 70.
(4) (a) Eisner, U.; Kuthan, J. Chem. Rev. 1972, 72, 1. (b) Stout,
D. M.; Meyers, A. I. Chem. Rev. 1982, 82, 223. (c) Sliwa, W. Heterocycles
1986, 24, 181. (d) Lavilla, R. J. Chem. Soc., Perkin Trans. 1 2002, 1141.
(e) Comins, D. L.; O’Connor, S.; Al-awar, R. S. In Comprehensive Hetero-
cyclic Chemistry III; Katritzky, A. R., Ramsden, C. A., Scriven, E. F. V.,
Taylor, R. J. K., Eds.; Elsevier Science: New York, 2008; Vol. 7, p 41.
(5) Activated pyridine derivatives such as N-acylpyridinium salts
have been reported to be good acceptors in transition-metal-catalyzed
addition reactions. For recent examples, see: (a) Ichikawa, E.; Suzuki,
M.; Yabu, K.; Albert, M.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2004,
126, 11808. (b) Legault, C.; Charette, A. B. J. Am. Chem. Soc. 2005,
127, 8966. (c) Sun, Z.; Yu, S.; Ding, Z.; Ma, D. J. Am. Chem. Soc. 2007,
7326
dx.doi.org/10.1021/ja2020229 |J. Am. Chem. Soc. 2011, 133, 7324–7327