ORGANIC
LETTERS
2011
Vol. 13, No. 10
2792–2794
“One-Pot” Multicomponent Approach to
Indolizines and Pyrido[1,2-a]indoles
€
Huajian Zhu, Joachim Stockigt, Yongping Yu, and Hongbin Zou*
Institute of Materia Medica, College of Pharmaceutical Sciences, Zhejiang University,
Hangzhou 310058, P. R. China
Received April 5, 2011
ABSTRACT
A new synthetic protocol for efficient and regiospecifc assembly of indolizines and pyrido[1,2-a]indoles by coupling of substituted methyl
bromides and alkynes with corresponding pyrrole-2-carboxaldehyde and 1H-indole-2-carboxaldehyde has been developed. Additionally, a
possible mechanism for the reaction is proposed.
During the past decade, the pharmacological potential
of indolizines has been well recognized. Many indolizines
have shown important biological activities, including anti-
HIV,1 anti-inflammatory,2 5-HT3 receptor antagonist,3
H3 receptor antagonist,4 as well as usage as molecular
probes.5 As a result, a variety of methods for their synthesis
have emerged6 and most synthetic strategies require start-
ing from pyridinium N-methylides6aÀd or pyridines with
specific C2 functionalization.6eÀn In recent published re-
ports, the transition-metal-catalyzed intramolecular reac-
tion of alkynylpyridines is the primary method of choice,
but often, this approach suffers from limitations such as
expensive metal catalyst or substrate complexity.6eÀk,7
Herein, we report a facile, efficient, and regiospecific
approach to provide indolizines with additional functional
diversity using commercially available starting material.
This “one-pot” three-component coupling reaction was
also found to be suitable for the synthesis of pyrido[1,2-
a]indoles which possess a wide array of important biolo-
gical properties.8 We also present two interesting examples
(6) (a) Kakehi, A.; Ito, S.; Maeda, T.; Takeda, R.; Nishimura, M.;
Tamashima, M.; Yamaguchi, T. J. Org. Chem. 1978, 43, 4837. (b) Shen,
Y. M.; Lv, P. C.; Chen, W.; Liu, P. G.; Zhang, M. Z.; Zhu, H. L. Eur. J.
Med. Chem. 2010, 45, 3184. (c) Katritzky, A. R.; Qiu, G. F.; Yang, B. Z.;
He, H. Y. J. Org. Chem. 1999, 64, 7618. (d) Xia, Z. Q.; Przewloka, T.;
Koya, K.; Ono, M.; Chen, S. J.; Sun, L. J. Tetrahedron Lett. 2006, 47,
8817. (e) Chernyak, D.; Gevorgyan, V. Org. Lett. 2010, 12, 5558. (f)
Chernyak, D.; Skontos, C.; Gevorgyan, V. Org. Lett. 2010, 12, 3242. (g)
Chernyak, D.; Gadamsetty, S. B.; Gevorgyan, V. Org. Lett. 2008, 10,
2307. (h) Seregin, I. V.; Schammel, A. W.; Gevorgyan, V. Org. Lett.
2007, 9, 3433. (i) Yan, B.; Liu, Y. Org. Lett. 2007, 9, 4323. (j) Smith,
C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9,
1169. (k) Hardin, A. R.; Sarpong, R. Org. Lett. 2007, 9, 4547. (l)
Chuprakov, S.; Gevorgyan, V. Org. Lett. 2007, 9, 4463. (m) Lahoz, I.;
(1) (a) Facompre, M.; Tardy, C.; Bal-Mahieu, C.; Colson, P.; Perez,
C.; Manzanares, I.; Cuevas, C.; Bailly, C. Cancer Res. 2003, 63, 7392. (b)
Reddy, M. V.; Rao, M. R.; Rhodes, D.; Hansen, M. S.; Rubins, K.;
Bushman, F. D.; Venkateswarlu, Y.; Faulkner, D. J. J. Med. Chem.
1999, 42, 1901.
(2) (a) Hagishita, S.; Yamada, M.; Shirahase, K.; Okada, T.; Murakami,
Y.; Ito, Y.; Matsuura, T.; Wada, M.; Kato, T.; Ueno, M.; Chikazawa, Y.;
Yamada, K.; Ono, T.; Teshirogi, I.; Ohtani, M. J. Med. Chem. 1996,39, 3636.
(b) Kitadokoro, K.; Hagishita, S.; Sato, T.; Ohtani, M.; Miki, K. J. Biochem.
1998, 123, 619. (d) Oslund, R. C.; Cermak, N.; Gelb, M. H. J. Med. Chem.
2008, 51, 4708.
(3) Bermudez, J.; Fake, C. S.; Joiner, G. F.; Joiner, K. A.; King,
F. D.; Miner, W. D.; Sanger, G. J. J. Med. Chem. 1990, 33, 1924.
(4) (a) Gupta, S. P.; Mathur, A. N.; Nagappa, A. N.; Kumar, D.;
Kumaran, S. Eur. J. Med. Chem. 2003, 38, 867. (b) Chai, W.; Breitenbucher,
J. G.; Kwok, A.; Li, X.; Wong, V.; Carruthers, N. I.; Lovenberg, T. W.;
Mazur, C.; Wilson, S. J.; Axe, F. U.; Jones, T. K. Bioorg. Med. Chem. Lett.
2003, 13, 1767.
(5) (a) Hodgkiss, R. J.; Middleton, R. W.; Parrick, J.; Rami, H. K.;
Wardman, P.; Wilson, G. D. J. Med. Chem. 1992, 35, 1920. (b) Kim, E.;
Koh, M.; Ryu, J.; Park, S. B. J. Am. Chem. Soc. 2008, 130, 12206.
ꢀ
ꢀ
R.; Sicre, C.; Navarro-Vazquez, A.; Silva Lopez, C.; Cid, M. M. Org.
Lett. 2009, 11, 4802. (n) Li, J. J.; Li, J. J.; Li, J.; Trehan, A. K.; Wong,
H. S.; Krishnananthan, S.; Kennedy, L. J.; Gao, Q.; Ng, A.; Robl, J. A.;
Balasubramanian, B.; Chen, B. C. Org. Lett. 2008, 10, 2897. (o)
ꢀ
ꢀ
Barluenga, J.; Lonzi, G.; Riesgo, L.; Lopez, L. A.; Tomas, M. J. Am.
Chem. Soc. 2010, 132, 13200. (p) Ge, Y. Q.; Jia, J.; Yang, H.; Zhao, G. L.;
Zhan, F. X.; Wang, J. W. Heterocycles 2009, 78, 725.
(7) (a) Yan, B.; Zhou, Y.; Zhang, H.; Chen, J.; Liu, Y. J. Org. Chem.
2007, 72, 7783. (b) Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006,
128, 12050.
(8) (a) Orlemans, E. O.; Verboom, W.; Scheltinga, M. W.; Reinhoudt,
D. N.; Lelieveld, P.; Fiebig, H. H.; Winterhalter, B. R.; Double, J. A.;
Bibby, M. C. J. Med. Chem. 1989, 32, 1612. (b) Elmegeed, G. A.; Baiuomy,
A. R.; Abdel-Salam, O. M. Eur. J. Med. Chem. 2007, 42
1285.
r
10.1021/ol200883w
Published on Web 04/21/2011
2011 American Chemical Society