Scheme 1. Related Racemic Pyran Syntheses
Figure 1. Structures of bryostatin 1 and phorboxazole.
differentially substituted pyrans as shown in Scheme 1 below
(eq 3).10
ways.5 Kang has described reactions of racemic hydroxy
allylsilanes of general structure 2 with vinyl ethers and R-halo
acetals to give acetals that were subsequently cyclized to
afford pyrans.6 Marko has developed an efficient pyran
synthesis that combines the Noyori method7 for generation
of oxocarbenium ions with intramolecular allylsilane trapping
and has coined the term ISMS (intramolecular silyl modified
Sakurai) to describe this reaction (eq 1, Scheme 1).8 Studies
by Marko have also documented the use of racemic hydroxy
allylsilanes in sequences leading to pyrans via an initial ene
reaction; Marko has suggested the term “IMSC” (intra-
molecular Sakurai cyclization) to refer to the cyclization step
of the process (eq 2, Scheme 1).9 Very recently, during the
preparation of our manuscript, Leroy and Marko reported
on the use of a functionalized allylstannane in BF3‚OEt2-
promoted reactions with aldehydes, followed by Bi(OTf)3-
promoted cyclocondensation with a second aldehyde, to yield
Rychnovsky has also developed a process termed “segment
coupling Prins cyclization”11 and applied it to an extremely
concise construction of the C20-C27 pyran subunit of
phorboxazole.12 Rychnovsky and Kopecky have also recently
reported a tandem Mukaiyama aldol-Prins sequence utilizing
allylsilanes, which bears similarity to the process described
herein.13 Both of these methods access nonracemic pyrans.
Smith has utilized the Petasis-Ferrier rearrangement in
efficient syntheses of nonracemic tetrahydropyrans, and
Panek has employed nonracemic allylsilanes to access
dihydropyrans.14
Herein we report an exceptionally facile enantioselective
synthesis of 2,6-cis-disubstituted-4-methylenetetrahydropyran
systems. These are obtained in a very brief three steps from
commercially available starting materials. As indicated in
Scheme 2, the overall two-step reaction process results in
the convergent union of two aldehyde components with a
four-carbon unit derived from the known 2-(trimethylsilyl-
methyl)allyltri-n-butylstannane reagent 1.15 For purposes of
(4) (a) Adams, D. R.; Bhaynagar, S. D. Synthesis 1977, 661. (b) Snider,
B. B. ComprehensiVe Organic Synthesis; Trost, B. M., Ed.; Pergamon
Press: Oxford, U.K., 1991; Vol. 2, p 527. (c) Cloninger, M. J.; Overman,
L. E. J. Am. Chem. Soc. 1999, 121, 1092. (d) Kozmin, S. A. Org. Lett.
2001, 3, 755.
(5) (a) Mohr, P. Tetrahedron Lett. 1993, 34, 6251. (b) Paquette, L. A.;
Tae, J. J. Org. Chem. 1996, 61, 7860. (c) Sano, T.; Oriyama, T. Synlett
1997, 716. (d) Suginome, M.; Iwanami, T.; Ito, Y. J. Org. Chem. 1998, 63,
6096. (e) Chen, C.; Mariano, P. S. J. Org. Chem. 2000, 65, 3252.
(6) Sung, T. M.; Kwak, W. Y.; Kang, K.-T. Bull. Korean Chem. Soc.
1998, 19, 862.
(7) Murata, S.; Suzuki, M.; Noyori, R. Tetrahedron 1988, 44, 4259.
(8) (a) Mekhalfia, A.; Marko, I. E. Tetrahedron Lett. 1991, 32, 4779.
(b) Mekhalfia, A.; Marko, I. E.; Adams, H. Tetrahedron Lett. 1991, 32,
4783.
(9) (a) Marko, I. E.; Bayston, D. J. Tetrahedron Lett. 1993, 34, 6595.
(b) Marko, I. E.; Bayston, D. J. Tetrahedron 1994, 50, 7141. (c) Marko, I.
E.; Mekhalfia, A.; Murphy, F.; Bayston, D. J.; Bailey, M.; Janousek, Z.;
Dolan, S. Pure Appl. Chem. 1997, 69, 565. (d) Marko, I. E.; Plancher, J.-
M.; Tetrahedron Lett. 1999, 40, 5259.
(10) Leroy, B.; Marko, I. E. Tetrahedron Lett. 2001, 41, 8685.
(11) Jaber, J. J.; Mitsui, K.; Rychnovsky, S. D. J. Org. Chem. 2001, 66,
4679.
(12) Rychnovsky, S. D.; Thomas, C. R. Org. Lett. 2000, 2, 1217.
(13) Kopecky, D. J.; Rychnovsky, S. D. J. Am. Chem. Soc. 2001, 123,
8420.
(14) For other recent asymmetric approaches to pyrans, see: (a) Petasis,
N. A.; Lu, S.-P. Tetrahedron Lett. 1996, 36, 141. (b) Smith, A. B., III;
Verhoest, P. R.; Minbiole, K. P.; Lim, J. J. Org. Lett. 1999, 1, 909. (c)
Smith, A. B., III; Minbiole, K. P.; Verhoest, P. R.; Beauchamp, T. J. Org.
Lett. 1999, 1, 913. (d) Huang, H.; Panek, J. S. J. Am. Chem. Soc. 2000,
122, 9836.
(15) (a) Kang, K.-T.; Hwang, S. S.; Kwak, W. Y.; Yoon, U. C. Bull.
Korean Chem. Soc. 1999, 20, 801. (b) Clive, D. L. J.; Paul, C. C.; Wang,
Z. J. Org. Chem. 1997, 62, 7028. (c) The 2-(chloromethyl)allylsilane
precursor to 1 is commercially available (Aldrich).
1190
Org. Lett., Vol. 4, No. 7, 2002