1914
J. Kotthaus et al. / Bioorg. Med. Chem. 19 (2011) 1907–1914
blood–brain barrier in small amounts. These results indicate that
N,N0-bis(valoxy)pentamidine (7) might possibly be efficacious in
the treatment of the late-stage African sleeping sickness. However,
further studies are necessary to prove this assumption.
Due to the fact that pentamidine (1) is known to accumulate in
tissues, we determined tissue contents and no plasma concentra-
tions. Unfortunately, oral bioavailability is calculated by means of
plasma concentrations. Thus we cannot declare a precise value
for the oral bioavailability of N,N0-bis(valoxy)pentamidine (7).
However, concentrations detected in the tissues indicate an ade-
quate oral bioavailability the pentamidine prodrug 7.
References and notes
1. Ettmayer, P.; Amidon, G. L.; Clement, B.; Testa, B. J. Med. Chem. 2004, 47, 2393–
2404.
2. Albert, A. G.; Phillips, R. J. Chem. Soc. 1948, 2240–2249.
3. Young, R. C.; Mitchell, R. C.; Brown, T. H.; Ganellin, C. R.; Griffiths, R.; Jones, M.;
Rana, K.; Saunders, D.; Smith, I. R.; Sore, N. E. J. Med. Chem. 1988, 31, 656–671.
4. Peterlin-Masic, L.; Cesar, J.; Zega, A. Curr. Pharm. Des. 2006, 12, 73–91.
5. Clement, B. WO 9,501,168, 1995.
6. Clement, B.; Schmitt, S.; Zimmermann, M. Arch. Pharm. (Weinheim, Ger.) 1988,
321, 955–956.
7. Hauptmann, J.; Paintz, M.; Kaiser, B.; Richter, M. Pharmazie 1988, 43, 559–560.
8. Clement, B.; Mau, S.; Deters, S.; Havemeyer, A. Drug Metab. Dispos. 2005, 33,
1740–1747.
9. Clement, B. Drug Metab. Rev. 2002, 34, 565–579.
10. Bürenheide, A.; Kunze, T.; Clement, B. Basic Clin. Pharmacol. Toxicol. 2008, 103,
61–65.
4. Conclusions
11. Havemeyer, A.; Bittner, F.; Wollers, S.; Mendel, R.; Kunze, T.; Clement, B. J. Biol.
Chem. 2006, 281, 34796–34802.
Conjugation of amidoximes with the amino acid L-valine repre-
12. Grünewald, S.; Wahl, B.; Bittner, F.; Hungeling, H.; Kanzow, S.; Kotthaus, J.;
Schwering, U.; Mendel, R. R.; Clement, B. J. Med. Chem. 2008, 51, 8173–8177.
13. Clement, B.; Raether, W. Arzneim.-Forsch. 1985, 35, 1009–1014.
14. Denise, H.; Barrett, M. P. Biochem. Pharmacol. 2001, 61, 1–5.
15. Apted, F. I. Pharmacol. Ther. 1980, 11, 391–413.
16. Bryceson, A. D.; Chulay, J. D.; Mugambi, M.; Were, J. B.; Gachihi, G.; Chunge, C.
N.; Muigai, R.; Bhatt, S. M.; Ho, M.; Spencer, H. C. Trans. R. Soc. Trop. Med. Hyg.
1985, 79, 705–714.
17. Newman, S. P.; Simonds, A. K. Lung 1990, 168, 685–691.
18. Sands, M.; Kron, M. A.; Brown, R. B. Rev. Infect. Dis. 1985, 7, 625–634.
19. Jones, H. E.; Bundel, G. K.; Tidwell, R. R.; Hall, J. E.; Farr, S. J.; Richards, R. J.
Toxicology 1993, 80, 1–12.
20. Boykin, D. W.; Kumar, A.; Spychala, J.; Zhou, M.; Lombardy, R. J.; Wilson, W. D.;
Dykstra, C. C.; Jones, S. K.; Hall, J. E.; Tidwell, R. R. J. Med. Chem. 1995, 38, 912–
916.
21. Mdachi, R. E.; Thuita, J. K.; Kagira, J. M.; Ngotho, J. M.; Murilla, G. A.; Ndung’u, J.
M.; Tidwell, R. R.; Hall, J. E.; Brun, R. Antimicrob. Agents Chemother. 2009, 53,
953–957.
22. Matovu, E.; Seebeck, T.; Enyaru, J. C.; Kaminsky, R. Microbes Infect. 2001, 3, 763–
770.
23. Bray, P. G.; Barrett, M. P.; Ward, S. A.; de Koning, H. P. Trends Parasitol. 2003, 19,
232–239.
24. Das, B. P.; Boykin, D. W. J. Med. Chem. 1977, 20, 1219–1221.
25. Wilson, B. N.; Tanious, F. A.; Mathis, A.; Hall, J. E.; Stephens, C. E.; Boykin, D. W.
Curr. Med. Chem. 2005, 5, 389–408.
26. Neidle, S.; Pearl, L. H.; Skelly, J. V. Biochem. J. 1987, 243, 1–13.
27. Clement, B.; Immel, M.; Terlinden, R.; Wingen, F. J. Arch. Pharm. (Weinheim,
Ger.) 1992, 325, 61–62.
28. Barrett, M. P.; Fairlamb, A. H. Parasitol. Today 1999, 15, 136–140.
29. Soeiro, M. N.; De Souza, E. M.; Stephens, C. E.; Boykin, D. W. Expert Opin. Invest.
Drugs 2005, 14, 957–972.
30. Clement, B.; Bürenheide, A.; Rieckert, W.; Schwarz, J. ChemMedChem 2006, 1,
1260–1267.
31. Stella, V. J.; Martodihardjo, S.; Terada, K.; Rao, V. M. J. Pharm. Sci. 1998, 87,
1235–1241.
32. Varma, M. V.; Khandavilli, S.; Ashokraj, Y.; Jain, A.; Dhanikula, A.; Sood, A.;
Thomas, N. S.; Pillai, O.; Sharma, P.; Gandhi, R.; Agrawal, S.; Nair, V.;
Panchagnula, R. Curr. Drug Metab. 2004, 5, 375–388.
33. Huttunen, K. M.; Kumpulainen, H.; Leppanen, J.; Rautio, J.; Jarvinen, T.;
Vepsalainen, J. Synlett 2006, 701–704.
sents a new double prodrug principle leading to compounds that
are highly water soluble and have improved oral bioavailability
compared to the unmodified amidoximes. Our in vitro and
in vivo studies demonstrated the excellent suitability of this pro-
drug principle for amidines. Both N-valoxybenzamidine (1) and
N,N0-bis(valoxy)pentamidine (7) were activated in vitro by all en-
zyme preparations investigated (i.e., porcine and human subcellu-
lar enzyme fractions, hmARC1, hmARC2, and hepatocytes). The
activation relies on esterases and mARC and is thus independent
from P450 enzymes minimizing the risk for drug-drug interactions
and undesired side effects. Our results demonstrate the increase of
solubility in comparison to the amidoxime prodrugs. Moreover,
both prodrugs show excellent oral bioavailability. In addition to
absorption by diffusion, the transport by amino acid and peptide
transporters in the gastrointestinal tract is feasible and will be
the subject of further investigations. In vivo, an oral bioavailability
of benzamidine (3) of about 88% was observed after oral adminis-
tration of prodrug 1 to rats. The high bioavailability also excludes
the possibility of an ester hydrolysis prior to absorption.
N,N0-bis(valoxy)pentamidine (7) entered the cells of all tissues
investigated. This effect is essential for the antiprotozoic effect of
pentamidine (8) considering that the parasites are spread through-
out the body. Principally, 7 was activated completely to the drug
pentamidine (8). Also, its solubility was improved over 100-fold
in comparison to N,N0-bis(acetoxy)pentamidine and to pentami-
dine diamidoxime (5). These observations indicate that the devel-
opment of this new prodrug principle may also considerably
improve the treatment of the second stage African sleeping sick-
ness. The drug can be applied intravenously in case of emergency
as well as orally during long-term treatment with overall improved
pharmacokinetic properties because of its excellent water solubil-
ity. Furthermore, the active drug pentamidine (8) was detected in
the brain, although only in small amounts. Passing the blood–brain
barrier is essential for curing the second stage of the African
sleeping sickness. Consequently, further studies are necessary to
investigate efficacy of the pentamidine prodrug 7. In this respect,
the development of pentamidine prodrugs based on other amino
acids might be reasonable possibly resulting in prodrugs being
better capable of crossing the blood–brain barrier.
34. Mantyla, A.; Rautio, J.; Nevalainen, T.; Keski-Rahkonen, P.; Vepsalainen, J.;
Jarvinen, T. Eur. J. Pharm. Sci. 2004, 23, 151–158.
35. Acosta, E. P.; Fletcher, C. V. Ann. Pharmacother. 1997, 31, 185–191.
36. Han, H.; de Vrueh, R. L.; Rhie, J. K.; Covitz, K. M.; Smith, P. L.; Lee, C. P.; Oh, D.
M.; Sadee, W.; Amidon, G. L. Pharm. Res. 1998, 15, 1154–1159.
37. Krueger, P. Ber. Dtsch. Chem. Ges. 1885, 18, 1053–1060.
38. Kotthaus, J.; Wahl, B.; Havemeyer, H.; Kotthaus, J.; Schade, D.; Schönberg, D. G.;
Mendel, R.; Bittner, F.; Clement, B. Biochem. J 2010, 433, 383–391.
39. Fröhlich, A. K.; Girreser, U.; Clement, B. Drug Metab. Dispos. 2005, 33, 1532–
1537.
40. Wingen, F.; Brägas, B. Arzneim.-Forsch. 1991, 41, 937–945.
41. Kotthaus, J.; Steinmetzer, T.; van de Locht, A.; Clement, B. J. Enzyme Inhib. Med.
Chem 2011, 26, 115–122.
42. Clement, B.; Christiansen, K.; Girreser, U. Chem. Res. Toxicol. 2001, 14, 319–326.
43. Liu, L.; Ling, Y.; Havel, C.; Bashnick, L.; Young, W.; Rai, R.; Vijaykumar, D.; Riggs,
J. R.; Ton, T.; Shaghafi, M.; Graupe, D.; Mordenti, J.; Sukbuntherng, J. 13th North
America ISSX Meeting; Maui, HI, 2005.
44. Chen, Y.; Dalwadi, G.; Benson, H. A. Curr. Drug Delivery 2004, 1, 361–
376.
Acknowledgements
We would like to thank Melissa Zietz and Sven Wichmann for
technical assistance and Dr. Ulrich Girreser for his advice and assis-
tance with the LC/MS analysis.