Lambert et al.
calculated and observed chemical shifts. Due to the stereoelec-
tronic effects, the O-methylation induced shifts of aromatic ring
hydrogen atoms in ortho-disubstituted phenols6 are very much
different than those in phenol8 (2) itself. In this work we
demonstrate, by investigation of 1H NMR spectra of a series of
model compounds, that the effects of methoxy group conforma-
tion can be easily generalized, affording a set of practically
useful rules. The experimental data are corroborated by calcula-
tions with density functional theory (DFT) method,9 which
reproduces the effects very well.
Results and Discussion
FIGURE 1. Minimum- and maximum-energy conformations of anisole
(1) and phenol (2).
1
Synthesis and H NMR Spectra of Model Compounds.
The complete series of methyl ethers of 1,2,3-benzenetriol (3-
8) and 4-methyl-1,2,3-benzenetriol (9-16) were included in the
investigation. The latter compounds were prepared by reduction
of 2,3,4-trihydroxybenzaldehyde or 2,3,4-trimethoxybenzalde-
hyde followed by partial O-methylation or demethylation.10 The
products were isolated by preparative HPLC and their structures
were confirmed by 1D and 2D NMR experiments.
1H NMR spectra of 3-16 were recorded in chloroform-d with
50-70 mM solutions. To ensure that the determined chemical
shifts are not influenced by intermolecular interactions, the
spectra were recorded again after dilution of the samples by a
factor of 20, which did not affect the observed chemical shifts.
The changes of 1H NMR chemical shifts observed upon stepwise
O-methylation of 3 and 9 are shown in Schemes 1 and 2,
respectively. The absolute chemical shift values are reported in
the Supporting Information (Table S1). Whenever necessary,
heteronuclear single quantum coherence (HSQC), heteronuclear
multiple bond correlation (HMBC), and nuclear Overhauser
effect (NOESY) spectra were recorded for unambiguous reso-
nance assignments.
correction for stereoelectronic effects of methoxy groups,
resulting from different conformational behavior of hydroxy and
alkoxy groups, may lead to substantial differences between
(1) (a) Baddeley, G.; Smith, N. H. P. J. Chem. Soc. 1961, 2516-2519.
(b) Grubb, E. L.; Smyth, C. P. J. Am. Chem. Soc. 1962, 83, 4873-4878.
(c) Baddeley, G.; Vickars, M. A. J. Chem. Soc. 1963, 765-770. (d) Clark,
E. R.; Williams, S. G. J. Chem. Soc. B 1967, 859-866. (e) Aroney, J. M.;
Le Fe´vre, R. J. W.; Pierens, P. K.; The, M. G. N. J. Chem. Soc. B 1969,
666-669. (f) Owen, N. L.; Hester, R. E. Spectrochim. Acta, Part A 1969,
25, 343-354. (g) Helgstrand, E. Acta Chem. Scand. 1970, 24, 3687-3696.
(h) Seip, H. M.; Seip, R. Acta Chem. Scand. 1973, 27, 4024-4027. (i)
Tylli, H.; Konshchin, H. J. Mol. Struct. 1977, 42, 7-12. (j) Emsley, J. W.;
Exon, C. M.; Slack, S. A.; Giroud, A. M. J. Chem. Soc., Perkin Trans. 2
1978, 928-931. (k) Anderson, G. M.; Kollman, P. A.; Domelsmith, L. N.;
Houk, K. N. J. Am. Chem. Soc. 1979, 101, 2344-2352. (l) Friege, H.;
Klessinger, M. Chem. Ber. 1979, 112, 1614-1625. (m) Konschin, H.; Tylli,
H.; Grundfelt-Forsius, C. J. Mol. Struct. 1981, 77, 51-64. (n) Klessinger,
M.; Zywietz, A. THEOCHEM 1982, 7, 341-350. (o) Gerhards, J.; Ha, T.
K.; Perlia, X. HelV. Chim. Acta 1982, 65, 105-121. (p) Schaefer, T.;
Wildman, T. A.; Peeling, J. J. Magn. Reson. 1984, 56, 144-148. (q)
Schaefer, T.; Laatikainen, R.; Wildman, T. A.; Peeling, J.; Penner, G. H.;
Baleja, J.; Marat, K. Can. J. Chem. 1984, 62, 1592-1597. (r) Nagy, L. T.;
Jancarova, M. Chem. Pap. 1985, 39, 289-294. (s) Schaefer, T.; Salman,
S. R.; Wildman, T. A.; Penner, G. H. Can. J. Chem. 1985, 63, 782-786.
(t) Onda, M.; Toda, A.; Mori, S.; Yamaguchi, I. J. Mol. Struct. 1986, 144,
47-51. (u) Schaefer, T.; Penner, G. H. Can. J. Chem. 1988, 66, 1635-
1640. (v) Schaefer, T.; Sebastian, R. Can. J. Chem. 1989, 67, 1148-1152.
(w) Breen, P. J.; Bernstein, E. R.; Secor, H. V.; Seeman, J. I. J. Am. Chem.
Soc. 1989, 111, 1958-1968. (x) Biekofsky, R. R.; Pomilio, A. B.; Aristegui,
R. A.; Contreras, R. H. J. Mol. Struct. 1995, 344, 143-150. (y) Facelli, J.
C.; Orendt, A. M.; Jiang, Y. J.; Pugmire, R. J.; Grant, D. M. J. Phys. Chem.
1996, 100, 8268-8272. (z) Dolgounitcheva, O.; Zakrzewski, V. G.; Ortiz,
J. V.; Ratovski, G. V. Int. J. Quant. Chem. 1998, 70, 1037-1043.
(2) (a) Spellmeyer, D. C.; Grootenhuis, P. D. J.; Miller, M. D.; Kuyper,
L. F.; Kollman, P. A. J. Phys. Chem. 1990, 94, 4483-4491. (b) Rumi, M.;
Zerbi, G. J. Mol. Struct. 1999, 509, 11-28. (c) Bzhezovskii, V. M.;
Kapustin, E. G. Russ. J. Org. Chem. 2002, 38, 564-572. (d) Bossa, M.;
Morpurgo, S.; Stranges, S. THEOCHEM 2002, 618, 155-164. (e) Kieninger,
M.; Ventura, O. N.; Diercksen, G. H. F. Chem. Phys. Lett. 2004, 389, 405-
412.
In the simplest possible case of O-methylation of a phenol
group, the conversion of phenol (2) to anisole (1) causes only
a small chemical shift change of Hortho (∆δ ) 0.08 ppm) and
8
Hmeta (∆δ ) 0.04 ppm), and has nearly no effect on Hpara
.
However, for the methyl ethers of 1,2,3-benzenetriol (3) and
4-methyl-1,2,3-benzenetriol (9), entirely different relationships
are observed (Schemes 1 and 2). Notably, O-methylation of
ortho-disubstituted hydroxyl groups caused a large shift of Hpara
by ∆δ ) 0.19 ( 0.02 ppm (mean ( standard deviation; n )
11), whereas only approximately half as large a shift of Hpara
was observed in the case of ortho-monosubstituted hydroxy
groups, ∆δ ) 0.11 ( 0.01 ppm (n ) 4). The remaining shifts
were considerably smaller. Thus, the shift of Hortho upon
O-methylation of ortho-monosubstituted hydroxy groups was
∆δ ) -0.03 ( 0.03 ppm (n ) 8). The O-methylation-induced
shifts of Hmeta were likewise small, ∆δ ) 0.05 ( 0.02 ppm (n
) 8) and δ ) 0.01 ( 0.02 ppm (n ) 12) for ortho-disubstituted
and ortho-monosubstituted phenol groups, respectively. It is
apparent that O-methylation-induced changes of aromatic ring
(3) (a) Gerzain, M.; Buchanan, G. W.; Driega, A. B.; Facey, G. A.;
Enright, G.; Kirby, R. A. J. Chem. Soc., Perkin Trans. 2 1996, 2687-
2693. (b) Popik, M. V.; Novikov, V. P.; Vilkov, L. V.; Samdal, S.;
Tafipolsky, M. A. J. Mol. Struct. 1996, 376, 173-181. (c) Tsuzuki, S.;
Houjou, H.; Nagawa, Y.; Hiratani, K. J. Chem. Soc., Perkin Trans. 2 2002,
1271-1273. (d) Novikov, V. P.; Vilkov, L. V.; Oberhammer, H. J. Phys.
Chem. A 2003, 107, 908-913.
(4) (a) Makriyannis, A.; Knittel, J. J. Tetrahedron Lett. 1979, 20, 2753-
2756. (b) Calvert, D. J.; Cambie, R. C.; Davis, B. R. Org. Magn. Reson.
1979, 12, 583-586. (c) A Makriyannis, A.; Fesik, S. J. Am. Chem. Soc.
1982, 104, 6462-6463. (d) Roitman, J. N.; James, L. F. Phytochemistry
1985, 24, 835-848. (e) Joseph-Nathan, P.; Garc´ıa-Mart´ınez, C.; Morales-
R´ıos, M. S. Magn. Reson. Chem. 1990, 28, 311-314. (f) Simonsen, H. T.;
Larsen, M. D.; Nielsen, M. W.; Adsersen, A.; Olsen, C. E.; Strasberg, D.;
Smitt, U. W.; Jaroszewski, J. W. Phytochemistry 2002, 60, 817-820.
(5) (a) Dhami, K. S.; Stothers, J. B. Can. J. Chem. 1966, 44, 2855-
2866. (b) Buchanan, G. W.; Montaudo, G.; Finocchiaro, P. Can. J. Chem.
1974, 52, 767-774. (c) Fujita, M.; Yamada, M.; Nakajima, S.; Kawai, K.-
I.; Nagai, M. Chem. Pharm. Bull. 1984, 32, 2622-2627.
(7) (a) ChemNMR Pro incorporated in ChemDraw, v. 10.0, Cambridge-
Soft Corp., Cambridge, MA. (b) ACD/HNMR Predictor, v. 9.0, ACD/Labs,
Toronto, Canada.
(8) Abraham, R. J.; Reid, M. J. Chem. Soc., Perkin Trans. 2 2002, 1081-
1091.
(9) Geerlings, P.; De Proft, F.; Langenaeker, W. Chem. ReV. 2003, 103,
1793-1873.
(10) (a) Pattekhan, H. H.; Divakar, S. J. Mol. Catal. A 2001, 169, 185-
191. (b) Xie, L.; Takeuchi, Y.; Cosentino, L. M.; McPhail, A. T.; Lee,
K.-H. J. Med. Chem. 2001, 44, 664-671. (c) Carvalho, C. F.; Russo, A.
V.; Sargent, M. V. Aust. J. Chem. 1985, 38, 777-792.
(6) Lambert, M.; Stærk, D.; Hansen, S. H.; Sairafianpour, M.; Jaroszew-
ski, J. W. J. Nat. Prod. 2005, 68, 1500-1509.
9450 J. Org. Chem., Vol. 71, No. 25, 2006