ACS Medicinal Chemistry Letters
Page 8 of 21
Thromb. Vasc. Biol. 2009, 29 (7), 1009–1016.
(19)
Hammad, B.; Evans, N. R.; Rudd, J. H. F.; Tawakol, A.
Molecular Imaging of Atherosclerosis with Integrated PET
Imaging. J. Nucl. Cardiol. 2017, 24 (3), 938–943.
Moghbel, M.; Al-Zaghal, A.; Werner, T. J.; Constantinescu, C.
M.; Høilund-Carlsen, P. F.; Alavi, A. The Role of PET in
Evaluating Atherosclerosis: A Critical Review. Semin. Nucl.
Van Schaftingen, E.; Jett, M. F.; Hue, L.; Hers, H. G. Control
of Liver 6-Phosphofructokinase by Fructose 2,6-
Bisphosphate and Other Effectors. Proc. Natl. Acad. Sci. U.
S. A. 1981, 78 (6), 3483–3486.
Okar, D. A.; Lange, A. J. Fructose-2,6-Bisphosphate and
Control of Carbohydrate Metabolism in Eukaryotes.
1
2
3
4
(6)
(7)
(20)
5
Med.
2018,
48
(6),
488–497.
6
7
8
9
BioFactors
1999,
10
(1),
1–14.
Meester, E. J.; Krenning, B. J.; de Swart, J.; Segbers, M.;
Barrett, H. E.; Bernsen, M. R.; Van der Heiden, K.; de Jong,
M. Perspectives on Small Animal Radionuclide Imaging;
Considerations and Advances in Atherosclerosis. Front.
Skagen, K.; Johnsrud, K.; Evensen, K.; Scott, H.; Krohg-
Sørensen, K.; Reier-Nilsen, F.; Revheim, M.-E.; Fjeld, J. G.;
Skjelland, M.; Russell, D. Carotid Plaque Inflammation
Assessed with 18F-FDG PET/CT Is Higher in Symptomatic
Compared with Asymptomatic Patients. Int. J. Stroke
(21)
(22)
(8)
(9)
Pober, J. S.; Sessa, W. C. Evolving Functions of Endothelial
Cells in Inflammation. Nat. Rev. Immunol. 2007, 7 (10),
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Zhang, R.; Li, R.; Liu, Y.; Li, L.; Tang, Y. The Glycolytic
Enzyme PFKFB3 Controls TNF-α-Induced Endothelial
Proinflammatory Responses. Inflammation 2019, 42 (1),
Tawakol, A.; Singh, P.; Mojena, M.; Pimentel-Santillana, M.;
Emami, H.; MacNabb, M.; Rudd, J. H. F.; Narula, J.; Enriquez,
J. A.; Través, P. G.; et al. HIF-1α and PFKFB3 Mediate a
Tight Relationship between pro-Inflammatory Activation
(10)
2015,
10
(5),
730–736.
and
Macrophages. Arterioscler. Thromb. Vasc. Biol. 2015, 35
(6), 1463–1471.
Anaerobic
Metabolism
in
Atherosclerotic
(23)
(24)
Tawakol, A.; Migrino, R. Q.; Bashian, G. G.; Bedri, S.;
Vermylen, D.; Cury, R. C.; Yates, D.; LaMuraglia, G. M.; Furie,
K.; Houser, S.; et al. In Vivo 18F-Fluorodeoxyglucose
Positron Emission Tomography Imaging Provides a
(11)
(12)
(13)
Parathath, S.; Yang, Y.; Mick, S.; Fisher, E. A. Hypoxia in
Murine Atherosclerotic Plaques and Its Adverse Effects on
Macrophages. Trends Cardiovasc. Med. 2013, 23 (3), 80–
Sluimer, J. C.; Daemen, M. J. Novel Concepts in
Atherogenesis:
Atherosclerosis. J. Pathol. 2009, 218 (1), 7–29.
Perrotta, P.; Emini Veseli, B.; Van der Veken, B.; Roth, L.;
Martinet, W.; De Meyer, G. R. Y. Pharmacological Strategies
to Inhibit Intra-Plaque Angiogenesis in Atherosclerosis.
Noninvasive Measure of Carotid Plaque Inflammation in
Patients. J. Am. Coll. Cardiol. 2006, 48 (9), 1818–1824.
Joshi, N. V.; Vesey, A. T.; Williams, M. C.; Shah, A. S. V.;
Calvert, P. A.; Craighead, F. H. M.; Yeoh, S. E.; Wallace, W.;
Salter, D.; Fletcher, A. M.; et al. 18F-Fluoride Positron
Emission Tomography for Identification of Ruptured and
Angiogenesis
and
Hypoxia
in
High-Risk Coronary Atherosclerotic Plaques:
A
Prospective Clinical Trial. The Lancet 2014, 383 (9918),
705–713.
6736(13)61754-7.
Vascul.
Pharmacol.
2019,
112,
72–78.
(25)
Rudd, J. H. F.; Narula, J.; Strauss, H. W.; Virmani, R.; Machac,
J.; Klimas, M.; Tahara, N.; Fuster, V.; Warburton, E. A.;
Fayad, Z. A.; et al. Imaging Atherosclerotic Plaque
Inflammation by Fluorodeoxyglucose With Positron
Emission Tomography. J. Am. Coll. Cardiol. 2010, 55 (23),
Emini Veseli, B.; Perrotta, P.; De Meyer, G. R. A.; Roth, L.;
Van der Donckt, C.; Martinet, W.; De Meyer, G. R. Y. Animal
Models of Atherosclerosis. Eur. J. Pharmacol.
Van der Donckt, C.; Van Herck, J. L.; Schrijvers, D. M.;
Vanhoutte, G.; Verhoye, M.; Blockx, I.; Van Der Linden, A.;
Bauters, D.; Lijnen, H. R.; Sluimer, J. C.; et al. Elastin
Fragmentation in Atherosclerotic Mice Leads to
Intraplaque Neovascularization, Plaque Rupture,
Myocardial Infarction, Stroke, and Sudden Death. Eur.
(14)
Boyd, S.; Brookfield, J. L.; Critchlow, S. E.; Cumming, I. A.;
Curtis, N. J.; Debreczeni, J.; Degorce, S. L.; Donald, C.; Evans,
N. J.; Groombridge, S.; et al. Structure-Based Design of
Potent and Selective Inhibitors of the Metabolic Kinase
PFKFB3. J. Med. Chem. 2015, 58 (8), 3611–3625.
Qureshi, W. T.; Rana, J. S.; Yeboah, J.; bin Nasir, U.; Al-
Mallah, M. H. Risk Stratification for Primary Prevention of
Coronary Artery Disease: Roles of C-Reactive Protein and
Coronary Artery Calcium. Curr. Cardiol. Rep. 2015, 17
Vigne, J.; Thackeray, J.; Essers, J.; Makowski, M.; Varasteh,
Z.; Curaj, A.; Karlas, A.; Canet-Soulas, E.; Mulder, W.;
Kiessling, F.; et al. Current and Emerging Preclinical
Approaches for Imaging-Based Characterization of
Atherosclerosis. Mol. Imaging Biol. 2018, 20 (6), 869–887.
Rathod, K. S.; Hamshere, S. M.; Jones, D. A.; Mathur, A.
Intravascular Ultrasound Versus Optical Coherence
Tomography for Coronary Artery Imaging – Apples and
Oranges? Interv. Cardiol. Rev. 2015, 10 (1), 8–15.
de Boer, S. P. M.; Brugaletta, S.; Garcia-Garcia, H. M.;
Simsek, C.; Heo, J. H.; Lenzen, M. J.; Schultz, C.; Regar, E.;
Zijlstra, F.; Boersma, E.; et al. Determinants of High
Cardiovascular Risk in Relation to Plaque-Composition of
a Non-Culprit Coronary Segment Visualized by near-
Infrared Spectroscopy in Patients Undergoing
Percutaneous Coronary Intervention. Eur. Heart J. 2014,
(26)
(27)
(15)
(16)
Heart
J.
2015,
36
(17),
1049–1058.
(28)
(29)
(30)
Gee, A. D.; Bongarzone, S.; Wilson, A. A. Small Molecules as
Radiopharmaceutical Vectors. In Radiopharmaceutical
Chemistry; Lewis, J. S., Windhorst, A. D., Zeglis, B. M., Eds.;
Springer International Publishing: Cham, 2019; pp 119–
Minchenko, O.; Opentanova, I.; Caro, J. Hypoxic Regulation
(17)
(18)
of
the
6-Phosphofructo-2-Kinase/Fructose-2,6-
Bisphosphatase Gene Family (PFKFB-1–4) Expression in
Vivo. FEBS Lett. 2003, 554 (3), 264–270.
Cao, Y.; Zhang, X.; Wang, L.; Yang, Q.; Ma, Q.; Xu, J.; Wang, J.;
Kovacs, L.; Ayon, R. J.; Liu, Z.; et al. PFKFB3-Mediated
Endothelial
Glycolysis
Promotes
Pulmonary
35
(5),
282–289.
Hypertension. Proc. Natl. Acad. Sci. 2019, 116 (27),
ACS Paragon Plus Environment