P. Knochel et al.
8.5 Hz, 2H), 6.13 (sxt, J=3.0 Hz, 1H), 4.37 (q, J=7.1 Hz, 2H), 2.19–2.05
(m, 2H), 1.84 (d, J=2.7 Hz, 3H), 1.40 (t, J=7.1 Hz, 3H), 1.07 ppm (t,
J=7.5 Hz, 3H); 13C NMR (100 MHz, CDCl3): d=203.7, 166.5, 141.1,
129.8, 128.2, 126.2, 106.0, 94.1, 60.7, 27.1, 18.5, 14.3, 12.2 ppm; HRMS:
m/z: calcd for C15H18O2: 230.1307; found: 230.1303. MS (EI, 70 eV): m/z
(%): 230 (71) [M+], 157 (100), 142 (96), 129 (59), 128 (70); IR n˜ =2968
(w), 1712 (s), 1606 (m), 1366 (w), 1268 (vs), 1172 (m), 1097 (s), 1018 (m),
864 (m), 760 (m), 696 cmÀ1 (m).
demic Press, London, 1983; d) Allenes in Organic Synthesis (Eds.:
H. E. Schuster, G. M. Coppola), Wiley, New York, 1984.
3740; Angew. Chem. Int. Ed. 2000, 39, 3590–3593.
c) N. Krause, A. Hoffmann-Rçder in Modern Organocopper
Chemistry (Ed.: N. Krause), Wiley-VCH, Weinheim, 2002, pp. 145–
166.
Preparation of 7c from 10c: A dry, argon-flushed Schlenk flask equipped
with a magnetic stirring bar and a septum was charged with 4-chlorobu-
tylzinc bromide (11b, 21.4 mL, 18.0 mmol, 0.84m in THF) and cooled to
À208C. Then CuCN·2LiCl (18 mL, 18 mmol, 1m in THF) was added, fol-
lowed by 1,1-dichloronon-2-yne (10c, 3.86 g, 20 mmol). After stirring for
30 min at À208C, the reaction was quenched with saturated NH4Cl solu-
tion (30 mL), extracted with Et2O (3ꢃ50 mL), washed with brine (1ꢃ
30 mL) and dried over Na2SO4. The crude residue obtained after evapo-
ration of solvents was purified by column chromatography (SiO2, pen-
tane) to give 7c as a colorless oil (4.09 g, 91%). 1H NMR (300 MHz,
CDCl3): d=6.04 (quin, J=2.2 Hz, 1H), 3.56 (t, J=6.6 Hz, 2H), 2.16–2.00
(m, 4H), 1.92–1.73 (m, 2H), 1.71–1.54 (m, 2H), 1.54–1.17 (m, 8H), 0.98–
0.78 ppm (m, 3H); 13C NMR (100 MHz, CDCl3): d=198.6, 116.7, 89.1,
44.8, 33.1, 32.2, 31.9, 31.6, 28.8, 27.1, 24.4, 22.6, 14.0 ppm; HRMS: m/z:
calcd for C13H22Cl2: 248.1099; found: 248.1077; MS (EI, 70 eV): m/z
(%):248 (>1) [M+], 143 (25), 104 (30), 102 (100), 79 (19), 67 (19), 41
˜
(23). IR n=3056 (vw), 2954 (s), 2928 (vs), 2858 (s), 1958 (w), 1720 (vw),
1456 (w), 1378 (w), 1310 (w), 1206 (w), 722 (m), 652 cmÀ1 (w).
Preparation of 5m from 7 f: A dry, argon-flushed Schlenk flask equipped
with a magnetic stirring bar and a septum was charged with ethyl 4-iodo-
benzoate (552 mg, 2 mmol) in THF (1.0 mL). iPrMgCl·LiCl (1.6 mL,
2.1 mmol, 1.3m in THF) was added at À208C and the mixture was stirred
for 30 min at this temperature. CuCN·2LiCl (0.2 mmol, 0.2 mL, 1.0m in
THF) followed by 7-chloro-5-methylhepta-5,6-dienenitrile (7 f, 373 mg,
2.4 mmol) were added to the freshly prepared Grignard reagent at
À208C and the reaction mixture was stirred at room temperature for 1 h.
Then, the reaction mixture was poured into an ice-cooled saturated aque-
ous NH4Cl solution (25 mL). After extraction with Et2O (3ꢃ25 mL), the
organic layers were dried (Na2SO4), filtered, and concentrated in vacuo.
The crude residue obtained was purified by column chromatography
(SiO2, pentane/Et2O=7:3) to give 5m as a light yellow oil (444 mg,
82%). 1H NMR (300 MHz, CDCl3): d=7.94 (d, J=8.2 Hz, 2H), 7.26 (d,
J=8.4 Hz, 2H), 6.14 (d, J=2.8 Hz, 1H), 4.34 (q, J=7.11 Hz, 2H), 2.41–
2.29 (m, 2H), 2.29–2.16 (m, 2H), 1.89–1.74 (m, 5H), 1.36 ppm (t, J=
7.1 Hz, 3H); 13C NMR (100 MHz, CDCl3): d=203.5, 166.4, 140.1, 129.9,
128.7, 126.3, 119.3, 102.6, 94.8, 60.8, 32.4, 23.2, 18.8, 16.6, 14.3 ppm;
HRMS: m/z: calcd for C17H19NO2: 269.1416, found: 269.1407; MS (EI,
70 eV): m/z (%):269 (15) [M+], 224 (30), 216 (27), 196 (81), 155 (27),
3920–3923; d) C. Polizzi, C. Consoloni, L. Lardicci, A. M. Caporus-
see: K. Kobayashi, H. Naka, A. E. Wheatley, Y. Kondo, Org. Lett.
R. Riveiros, D. Rodrꢆguez, J. P. Sestelo, L. A. Sarandeses, Org. Lett.
2444; f) for an allene synthesis by sulfoxide–metal exchange, see: T.
Satoh, N. Hanaki, Y. Kuramochi, Y. Inoue, K. Hosoya, K. Sakai, Tet-
[8] a) P. Knochel, W. Dohle, N. Gommermann, F. F. Kneisel, F. Kopp, T.
c) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A. Gavryush-
˜
143 (100), 128 (42); IR n=2982 (w), 2940 (w), 2906 (w), 1950 (vw), 1710
(vs), 1606 (m), 1446 (w), 1426 (w), 1392 (w), 1368 (w), 1272 (vs), 1174
(m), 1100 (s), 1018 (m), 868 (w), 762 (w), 698 cmÀ1 (w).
[9] a) S. R. Landor, A. N. Patel, P. F. Whiter, P. M. Greaves, J. Chem.
[10] We observed the formation of the isomeric alkyne of type 4 only if
stoichiometric amounts of CuBr were used.
Acknowledgements
The research leading to these results has received funding from the Euro-
pean Research Council under the European Communityꢄs Seventh
Framework Programme (FP7/2007–2013) ERC grant agreement no.
227763. Furthermore, we thank the DFG (SFB 749) for a financial sup-
port. We also thank Chemetall GmbH (Frankfurt), Umicore AG (An-
gleur, Belgium), Heraeus Holding GmbH (Hanau), and BASF SE (Lud-
wigshafen) for their generous gift of chemicals.
[12] a) T. Delacroix, L. Bꢅrillon, G. Cahiez, P. Knochel, J. Org. Chem.
c) C. B. Rauhut, C. Cervino, A. Krasovskiy, P. Knochel, Synlett 2009,
67–70.
[13] M. Journet, D. Cai, L. M. DiMichele, R. D. Larsen, Tetrahedron
[14] K. N. Shavrin, I. V. Krylova, I. B. Shvedova, G. P. Okonnishnikova,
[1] a) Modern Allene Chemistry (Eds.: N. Krause, A. S. K. Hashmi),
Wiley-VCH, Weinheim, 2005; b) The Chemistry of Ketenes, Allenes,
and Related Compounds (Ed.: S. E. Patai), Wiley, New York, 1980;
c) The Chemistry of the Allenes: Synthesis (Ed.: S. R. Landor), Aca-
4236
ꢂ 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Chem. Eur. J. 2011, 17, 4232 – 4237