sensors which could selectively detect potassium and
fluoride ions.
Scheme 1. Synthetic Route of 1
Herein, we report a novel bifunctional luminescence
probe for potassium and fluoride ions with high sensitivity
and selectivity, by a combination of 1,3-alternate calix[4]-
crown-5 and triarylborane moieties through alkynyl lin-
kers. In previous studies, the 1,3-alternate calix[4]-crown-5
platform has been proven to bind a potassium ion selec-
tively through the complexation of the crown ether ring
and additional binding by cationꢀπ interactions between
the two phenyl rings.10,11 A recent study showed that
triarylborane compounds containing sterically hindered
groups such as dimesityl and triduryl moieties showed
enhanced size selectivity toward fluoride ions by utilizing
the empty pπ orbital on the boron center.8 In addition, they
have a tendency to display intense intramolecular charge-
transfer transitions when an appropriate electron donor is
present. The alkynyl group could serve as a very good
connector for electron communication which produces
intense intramolecular charge transfer from the oxygen
to the boron center.
The synthetic procedure of 1 is summarized in Scheme 1.
Iodination of dipropoxylcalixarene nPrO-Calix followed by a
Sonagashira cross-coupling reaction gave the bis(trimethyl-
silylethynyl)-substituted calixarene nPrO-Calix-CtCTMS.
A subsequent reaction of nPrO-Calix-CtCTMS with penta-
ethylene glycol di-p-toluenesulfonate in the presence of
Cs2CO3 gave 1,3-alternate nPrO-Calixcrown[5]-CtCH.
A further Sonagashira cross-coupling reaction of
nPrO-Calixcrown[5]-CtCH and 1-iodo-4-dimesitylboryl-
benzene afforded the desired compound 1. The identity
of 1 was established by 1H NMR, 13C NMR, mass spectro-
metry, and satisfactory elemental analysis.
fluorescence (λem = 430 nm, φem = 0.70) in CH2Cl2
solution. The emission is assigned to originate from an
excited state derived from the intramolecular charge trans-
fer transition from the phenol O atom to the boron center.
In more polar solvents like DMF, a significant red shift in
the emission maximum of ca. 1830 cmꢀ1 was observed,
characteristic of charge transfer transitions.
Compound 1 displays an intense electronic absorption
band centered at 342 nm (ε = 77000) and a bright blue
Figure 1 shows the UVꢀvis and emission spectral
changes of 1 in CH2Cl2/CH3OH (1:1, v/v) upon addition
of Kþ ions. The addition of Kþ ions to a solution of 1 in
CH2Cl2/CH3OH resulted in an increase in the absorbance
and a small blue shift in the absorption energy of the low-
energy band. Two well-defined isosbestic points at 280 and
348 nm are observed, indicative of a clean conversion of 1
to the ion-bound adduct. In addition, the luminescence
response of 1 toward Kþ was found to be more pro-
nounced. Significant emission quenching with a concomi-
tant blue shift of ca. 20 nm was observed, which was
consistent with the blue shift observed in the UVꢀvis
absorption spectra. The emission quenching and blue shift
in emission energies upon Kþ inclusion could be rationa-
lized by the reduced electron-donating ability of the
diethynylcalixcrown moiety upon inclusion of the guest
metal ion. Although ion-binding may lead to an increase in
the rigidity of the calixcrown complex and the inhibition of
photoinduced electron transfer and therefore may enhance
the emission intensity, the significant changes in the emis-
sion intensity may be a result of the high sensitivity of the
intramolecular charge transfer emission to the binding
event. Moreover, the sensor showed a high sensitivity
ꢀ~
ꢀ
(7) (a) Martınez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103,
4419. (b) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486.
ꢀ
(c) Amendola, V.; Esteban-Gomez, D.; Fabbrizzi, L.; Licchelli, M. Acc.
Chem. Res. 2006, 39, 343. (d) Sessler, J. L.; Gale, P. A.; Cho, W. S. Anion
Receptor Chemistry; RSC: Cambridge, 2006.
(8) (a) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaı,
F. P. Chem. Rev. 2010, 110, 3958. (b) Hudson, Z. M.; Wang, S. Acc.
Chem. Res. 2009, 42, 1584. (c) You, Y.; Park, S. Y. Adv. Mater. 2008, 20,
3820. (d) Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Am. Chem. Soc.
2001, 123, 11372. (e) Lam, S. T.; Zhu, N.; Yam, V. W. W. Inorg. Chem.
2009, 48, 9664.
(9) (a) Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y.; Yang, G.
Angew. Chem., Int. Ed. 2010, 49, 4915. (b) Kim, S. Y.; Park., J.; Koh, M.;
Park, S. B.; Hong, J. I. Chem. Commun. 2009, 4735. (c) Kim, T. H.;
Swager, T. M. Angew. Chem., Int. Ed.. 2003, 42, 4803. (d) Jiang, X.;
Vieweger, M. C.; Bollinger, J. C.; Dragnea, B.; Lee, D. Org. Lett. 2007, 9,
3579. (e) Black, C. B.; Andrioletti, B.; Try, A. C.; Ruiperez, C.; Sessler,
J. L. J. Am. Chem. Soc. 1999, 121, 10438. (f) Cho, E. J.; Moon, J. W.; Ko,
S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc.
2003, 125, 12376. (g) Liu, X. Y.; Bai, D. R.; Wang, S. Angew. Chem., Int.
Ed. 2006, 45, 5475. (h) Reetz, M. T.; Niemeyer, C. M.; Harms, K. Angew.
Chem., Int. Ed. 1991, 30, 1472.
(10) (a) Kim, J. S.;Quang, D. T. Chem. Rev. 2007, 107, 3780. (b)Casnati,
A.; Pochini, A.; Ungano, R.; Bocchi, C.; Ugozzoli, F.; Egberink, R. J. M.;
Struijk, H.; Lugtenberg, R.; Jong, F.; de, Reinhoudt, D. N. Chem.;Eur. J.
1996, 2, 436.
(11) (a) Yam, V. W. W.; Yip, S. K.; Yuan, L. H.; Cheung, K. L.; Zhu,
N.; Cheung, K. K. Organometallics 2003, 22, 2630. (b) Lo, H. S.; Yip,
S. K.; Wong, K. M. C.; Zhu, N.; Yam, V. W. W. Organometallics 2006,
25, 3537. (c) Yip, S. K.; Cheng, E. C. C.; Yuan, L. H.; Zhu, N.; Yam,
V. W. W. Angew. Chem., Int. Ed. 2004, 43, 4954.
Org. Lett., Vol. 13, No. 9, 2011
2173