214
R. C. F. Jones et al.
LETTER
(3) For a selection of leading references, see the following and
references therein: (a) Chakraborty, T. K.; Rao, K. S.; Kiran,
M. U.; Jagadeesh, B. Tetrahedron Lett. 2008, 49, 2228.
(b) Lesma, G.; Sacchetti, A.; Silvani, A. Tetrahedron Lett.
2008, 49, 1293. (c) Lomlim, L.; Einsiedel, J.; Heinemann, F.
W.; Meyer, K.; Gmeiner, P. J. Org. Chem. 2008, 73, 3608.
(4) (a) Jones, R. C. F.; Dickson, J. J. Peptide Sci. 2001, 7, 220.
(b) Jones, R. C. F.; Dickson, J. J. Peptide Sci. 2000, 6, 621.
(c) Jones, R. C. F.; Gilbert, I. H.; Rees, D. C.; Crockett,
A. K. Tetrahedron 1995, 51, 6315. (d) Jones, R. C. F.;
Crockett, A. K. Tetrahedron Lett. 1993, 34, 7459.
(5) Jones, R. C. F.; Hollis, S. J.; Iley, J. N. Tetrahedron:
Asymmetry 2000, 11, 3273.
(6) Pillainayagam, T. PhD Thesis; Loughborough University:
UK, 2005.
(7) See, for example: Elguero, J.; Goya, P.; Jagerovic, N.; Silva,
A. M. S. Targets in Heterocyclic Systems, Vol. 6; Attanasi,
O. A.; Spinelli, D., Eds.; Italian Society of Chemistry:
Rome, 2002, 52.
(8) For leading references, see: (a) Jones, R. C. F.; Choudhury,
A. K.; Iley, J. N.; Loizou, G.; Lumley, C.; McKee, V. Synlett
2010, 654. (b) Jones, R. C. F.; Pillainayagam, T. A. Synlett
2004, 2815.
(9) For our exploration with azomethine imines, see: Jones,
R. C. F.; Hollis, S. J.; Iley, J. N. ARKIVOC 2007, (v), 152.
(10) For a similar approach to 4,5-dihydroisoxazole peptide
mimetics, see: Chung, Y. J.; Ryu, E. J.; Keum, G.; Kim,
B. H. Bioorg. Med. Chem. 1996, 4, 209.
4.14 (2 H, q, J = 7.2 Hz, CH2CH3), 4.43 (1 H, m, CH3CH),
4.54, 4,57 (each 0.5 H, dd, J = 7.2, 12.4 Hz, CHCO2Et,
diastereomers 1 and 2), 5.00 (1 H, br s, NH), 6.78 (1 H, m,
ArH), 6.93 (2 H, m, ArH), 7.18 (2 H, m, ArH). 13C NMR
(100 MHz, CDCl3): d = 14.2, 21.1 (CH3) 28.2 [(CH3)3C],
40.15 (4-CH2), 46.1 (5-CH), 61.7 (OCH2), 113.0 (PhCH),
113.0, 119.7, 119.8, 129.0 (4 × CH), 129.1 (2 × C), 145.3
(CN), 171.2, 171.5 (2 × CO). MS (EI): m/z = 362 [MH+],
171 (12), 154 (24), 147 (19), 123 (21), 111 (28), 109 (35), 95
(54), 81 (54), 69 (85), 57 (100), 55 (99). HRMS (EI): m/z
calcd for C19H27N3O4: 362.2074 [MH+]; found 362.2073
[MH+]. Anal. Calcd (%) for C19H27N3O4: C, 63.1; H, 7.5; N,
11.6. Found: C, 62.6; H, 7.2; N, 11.8.
(15) Sharp, J. T. In Synthetic Applications of 1,3-Dipolar
Cycloaddition Chemistry Toward Heterocycles and Natural
Products; Padwa, A.; Pearson, W. H., Eds.; John Wiley and
Sons: Hoboken, 2003, 473.
(16) (a) Molteni, G.; Ponti, A.; Orlandi, M. New J. Chem. 2002,
26, 1340. (b) Broggini, G.; Molteni, G.; Orlandi, M.
J. Chem. Soc., Perkin Trans. 1 2000, 3742.
(17) (a) For a review of silver salts in pyrazole synthesis, see:
Molteni, G. ARKIVOC 2007, (ii), 224. (b) De Benassuti, L.;
Garanti, L.; Molteni, G. Tetrahedron 2004, 60, 4627.
(18) Zhang, X.; Breslav, M.; Grimm, J.; Guan, K.; Huang, A.;
Liu, F.; Maryanoff, C. A.; Palmer, D.; Patel, M.; Qian, Y.;
Shaw, C.; Sorgi, K.; Stefanick, S.; Xu, D. J. Org. Chem.
2002, 67, 9471.
(19) Sakamoto, T.; Kikugawa, Y. Chem. Pharm. Bull. 1988, 36,
(11) Cf. for a-amino-oximes: ref. 10. For a-amino
semicarbazides: Ito, A.; Takahashi, R.; Baba, Y. Chem.
Pharm. Bull. 1975, 23, 3081.
800.
(20) Cf. ref. 16a for a discussion on the reduced rate of nitrile
imine cycloadditions with electron-rich dipolarophiles and/
or electron-poor dipoles.
(12) Patel, H. V.; Vyas, K. A.; Pandey, S. P.; Fernandes, P. S.
Tetrahedron 1996, 52, 661.
(13) Bach, K.; El-Seedi, H.; Jensen, H.; Nielsen, H.; Thomsen, I.;
Torssell, K. Tetrahedron 1994, 50, 7543.
(21) Crystal Data for 7
C19H27N3O4, M = 361.44, monoclinic, a = 5.14990 (10),
b = 11.4316 (4), c = 16.8254 (6) Å, b = 96.320 (2),
U = 984.52 (5) Å3, T = 120 (2) K, space group P21, graphite
monochromated Mo Ka radiation, l = 0.71073 Å, Z = 2,
Dc = 1.219 g cm–3, F(000) = 388, colourless, dimensions
0.36 × 0.09 × 0.04 mm3, m = 0.086 mm–1, 3.02 < q < 28.19°,
11290 reflections measured, 2363 unique reflections,
Rint = 0.0376. The structure was solved by direct methods
and refined on F2. Friedel pairs were merged due to the lack
of any significant anomalous scattering. wR2 = 0.0833 (all
data, 244 parameters); R1 = 0.0351 [2223 data with F2 >
2s(F2)]. Crystallographic data (excluding structure factors)
for the structures in this paper have been deposited with the
Cambridge Crystallographic Data Centre as supplementary
publication no. 787832. Copies of the data can be obtained,
free of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK [fax: +44 (1223)336033 or e-
mail: deposit@ccdc.cam.ac.uk).
(14) Typical Procedure for NCS Chlorination and Method 1
(S)-3-(1-tert-Butoxycarbonylaminoethyl)-2-phenyl-4,5-
dihydro-1H-pyrazole-5-carboxylic Acid Ethyl Ester (7)
To (S)-[1-methyl-2-(phenylhydrazono)ethyl]carbamic acid
tert-butyl ester (5, 1.24 g, 4.72 mmol) in EtOAc (15 mL) at
60 °C was added NCS (0.71 g, 5.35 mmol, 1.1 equiv) and the
mixture stirred for 1 h. Ethyl propenoate (0.918 g, 1.0 mL,
9.16 mmol, 1.9 equiv), KHCO3 (2.41 g, 23.97 mmol, 5.1
equiv) and a few drops of H2O were added and the mixture
stirred at 70 °C for 20 h. The mixture was then filtered and
the filtrate concentrated under reduced pressure to give a
dark orange oil, purified by column chromatography on
silica gel eluting with light PE–EtOAc (7:1, v/v) to yield the
title compound 7 (0.72 g, 41%) in an inseparable 1:1 mixture
of diastereomers, as an orange solid; mp 93–95 °C. IR
(CHCl3): nmax = 3354 (NH), 1599 (C=N), 1708 (C=O), 1168
(CO), 750 (PhCH) cm–1. 1H NMR (400 MHz, CDCl3):
d = 1.16 (3 H, t, J = 7.2 Hz, CH2CH3), 1.35 (3 H, d, J = 7.0
Hz, CH3CH), 1.38 [9 H, s, C(CH3)3], 2.99 (1 H, dd, J = 7.2,
17.6 Hz, 4-CHH), 3.24 (1 H, dd, J = 12.4, 17.6 Hz, 4-CHH),
(22) For leading references, see: (a) Huck, B. R.; Fisk, J. D.;
Gellman, S. H. Org. Lett. 2000, 2, 2607. (b) Fisk, J. D.;
Powell, D. R.; Gellman, S. H. J. Am. Chem. Soc. 2000, 122,
5443.
Synlett 2011, No. 2, 211–214 © Thieme Stuttgart · New York