D
E. S. Isbrandt et al.
Letter
Synlett
Supporting Information
(7) Defoin, A.; Defoin-Straathann, R.; Kuhn, H. J. Tetrahedron 1984,
14, 2651.
(8) During the completion of this manuscript, an Ir-catalyzed
method to deuterate aldehydes using D2 gas was published. See:
Kerr, W. J.; Reid, M.; Tuttle, T. Angew. Chem. Int. Ed. 2017, 129,
7916.
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(9) Tse, S. K. S.; Xue, P.; Lin, Z.; Jia, G. Adv. Synth. Catal. 2010, 352,
1512.
(1) (a) Isin, E. M.; Elmore, C. S.; Nilsson, G. N.; Thompson, R. A.;
Weidolf, L. Chem. Res. Toxicol. 2012, 25, 532. (b) Marathe, P. H.;
Shyu, W. C.; Humphreys, W. G. Curr. Pharm. Des. 2004, 10, 2991.
(c) Elmore, C. S. Annu. Rep. Med. Chem. 2009, 44, 515.
(d) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (e) Katsnelson,
A. Nat. Med. 2013, 19, 656.
(2) For select examples of the deuteride reduction, alcohol oxida-
tion sequence, see: (a) Sakamoto, S.; Mori, K.; Akiyama, T. Org.
Lett. 2012, 14, 3312. (b) Kihara, M.; Andoh, J.-i.; Yoshida, C. Het-
erocycles 2000, 53, 359. (c) Schwab, J. M.; Klassen, J. B. J. Am.
Chem. Soc. 1984, 106, 7217. (d) Olsen, E. P. K.; Singh, T.; Harris,
P.; Andersson, P. G.; Madsen, R. J. Am. Chem. Soc. 2015, 137, 834.
(e) Davies, P. W.; Martin, N.; Spencer, N. Beilstein J. Org. Chem.
2011, 7, 839. (f) Adcock, H. V.; Chatzopoulou, E.; Davies, P. W.
Angew. Chem. Int. Ed. 2015, 54, 15525. (g) Wu, J.; Wang, D.; Wan,
Y.; Ma, C. Chem. Commun. 2016, 52, 1661.
(3) (a) Spletstoser, J. T.; White, J. M.; Georg, G. I. Tetrahedron Lett.
2004, 45, 2787. (b) Spletstoser, J. T.; White, J. M.; Tunoori, A. R.;
Georg, G. I. J. Am. Chem. Soc. 2007, 129, 3408.
(4) Thompson, A. F.; Cromwell, N. H. J. Am. Chem. Soc. 1939, 61,
1374.
(5) Seebach, D.; Erickson, B. W.; Singh, G. J. Org. Chem. 1966, 31,
4303.
(6) For example, at the time of publication, both benzaldehyde and
its formyl-deuterated analogue (98% D) are commercially avail-
able from Sigma-Aldrich, with the latter being over 1000 times
more costly.
(10) (a) Chatterjee, B.; Gunanthan, C. Org. Lett. 2015, 17, 4794.
(b) Bai, W.; Lee, K.-H.; Tse, S. K. S.; Chan, K. W.; Lin, Z.; Jia, G.
Organometallics 2015, 34, 3686. (c) Bossi, G.; Putignano, E.;
Rigo, P.; Baratta, W. Dalton Trans. 2011, 40, 8986. (d) Khaskin,
E.; Milstein, D. ACS Catal. 2013, 3, 448.
(11) Tse, S. K. S.; Xue, P.; Lau, C. W. S.; Sung, H. H. Y.; Williams, I. D.;
Jia, G. Chem. Eur. J. 2011, 17, 13918.
(12) (a) Levison, J. J.; Robinson, S. D. J. Chem Soc. A. 1970, 2947.
(b) Jasimuddin, S.; Thakurata, D. G. Transition Met. Chem. 2009,
34, 937.
(13) Skaddan, M. B.; Yung, C. M.; Bergman, R. G. Org. Lett. 2004, 6, 11.
(14) Representative Procedure for Aldehyde Deuteration
2-Naphthaldehyde (1a, 46.9 mg, 0.3 mmol) and RuHCl(CO)(PPh3)3
(14.3 mg, 0.015 mmol, 5 mol%) were dissolved in PhMe (1.5 mL,
0.2 M) in an oven-dried screw-cap vial. D2O (27 μL, 1.5 mmol)
was then added. The vial was sparged with argon and capped.
The resulting solution was heated to 100 °C and stirred for 30
min. At the end of the reaction, the solvent was removed in
vacuo and the crude material was purified by column chroma-
tography using a 2 → 8% EtOAc in hexane gradient to afford 41.9
mg 2a as a white solid (89% yield, 72% D). 1H NMR (400 MHz,
CDCl3): δ = 8.35 (s, 1 H), 8.02–7.90 (m, 4 H), 7.67–7.57 (m, 2 H).
Residual formyl proton: δ = 10.1.
(15) (a) Chakraborty, S.; Guan, H. Dalton Trans. 2010, 39, 7427.
(b) Wang, D.; Astruc, D. Chem. Rev. 2015, 115, 6621.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D