2314
H. H. Choi et al. / Tetrahedron Letters 52 (2011) 2312–2315
used as a cyanide nucleophile and proton electrophile source,
respectively. Various types of acyl cyanides were prepared with
moderate to good yields after filtration through a plunge of silica
or recrystallization, although these compounds were relatively
reactive. Based on the plausible mechanism, TEA catalyzed this re-
dox reaction as a Lewis base in the cyanosilylation step and a Brön-
sted base in the umpolung generation step. The synthesized
a,b-
unsaturated acyl cyanide was successfully applied as a synthetic
precursor in the transformation reactions, especially in the iron
catalyzed arylation reactions. The knowledge gained from the
TEA-catalyzed redox reactions is expected to contribute to the de-
sign and development of various electrophiles for use in new bond
formation.
Scheme 2. Deuterium experiment.
Acknowledgments
This study was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, Basic Research
Promotion Fund) (KRF-2008-331-1-C00158) and the National Re-
search Foundation Grant funded by the Ministry of Education, Sci-
ence and Technology (2009-0069496).
Supplementary data
Supplementary data associated with this article can be found, in
Scheme 3.
a,b-Unsaturated acyl cyanides as synthetic precursors.
References and notes
1. (a) Seebach, D.; Corey, E. J. J. Org. Chem. 1975, 40, 231–237; (b) Seebach, D.
Angew. Chem. Int. Ed. Engl. 1979, 18, 239–258.
2. For reviews on NHC organocatalysts, see: (a) Nair, V.; Bindu, S.; Sreekumar, V.
Angew. Chem., Int. Ed. 2004, 43, 5130–5135; (b) Zeitler, K. Angew. Chem., Int. Ed.
2005, 44, 7506–7510; (c) Marion, N.; Díez-González, S.; Nolan, S. P. Angew.
Chem., Int. Ed. 2007, 46, 2988–3000; (d) Enders, D.; Niemeier, O.; Henseler, A.
Chem. Rev. 2007, 107, 5606–5655; (e) Rovis, T. Chem. Lett. 2008, 37, 2–7.
3. (a) Reynolds, N. T.; Read de Alaniz, J.; Rovis, T. J. Am. Chem. Soc. 2004, 126,
9518–9519; (b) Reynolds, N. T.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 16406–
16407; (c) Vora, H. U.; Rovis, T. J. Am. Chem. Soc. 2007, 129, 13796–13797; (d)
Yamaki, Y.; Shigenaga, A.; Tomita, K.; Narumi, T.; Fujii, N.; Otaka, A. J. Org. Chem.
2009, 74, 3272–3277.
4. (a) Chow, K. Y.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 8126–8127; (b) Sohn, S.
S.; Bode, J. W. Angew. Chem., Int. Ed. 2006, 45, 6021–6024; (c) Bode, J. W.; Sohn,
S. S. J. Am. Chem. Soc. 2007, 129, 13798–13799; (d) Vora, H. U.; Moncecchi, J. R.;
Epstein, O.; Rovis, T. J. Org. Chem. 2008, 73, 9727–9731.
5. (a) Chan, A.; Scheidt, K. A. Org. Lett. 2005, 7, 905–908; (b) Sohn, S. S.; Bode, J. W.
Org. Lett. 2005, 7, 3873–3876; (c) Zeitler, K. Org. Lett. 2006, 8, 637–640; (d)
Kaeobamrung, J.; Mahatthananchai, J.; Zheng, P.; Bode, J. W. J. Am. Chem. Soc.
2010, 132, 8810–8812.
Scheme 4. Fe(acac)3 catalyzed arylation of acyl cyanides.
The synthesized
synthetic precursors in the further transformation reactions,9a fea-
turing ,b-unsaturated carbonyl group or acyl cyanide group
a,b-unsaturated acyl cyanide would acted as
a
(Scheme 3). A variety of reactions, such as Hetero–Diels–Alder
reaction affording tetrahydropyridine rings,12 Michael reaction
with TiCl4 and allyl silanes affording enones,13 acylation reaction
with lithium enolate affording 1,3-diketones,14 and cyanoacylation
reaction to ketones affording O-acyl cyanohydrin esters,15 have al-
ready been explored and show a great selectivity and efficiency.
In synthetic applications, acyl cyanides are proved to be more
powerful acylating agents than acid chlorides, since the cyano
group enhances the reactivity of the adjacent carbonyl group.16
Moreover, the acylation of organometallic intermediates with acid
derivatives is an important method for the preparation of poly-
6. Other reactions of a-reducible aldehydes, see: (a) He, M.; Struble, J. R.; Bode, J.
W. J. Am. Chem. Soc. 2006, 128, 8418–8420; (b) He, M.; Uc, G. J.; Bode, J. W. J. Am.
Chem. Soc. 2006, 128, 15088–15089; (c) Seayad, J.; Patra, P. K.; Zhang, Y.; Ying, J.
Y. Org. Lett. 2008, 10, 953–956; (d) Wong, F. T.; Patra, P. K.; Seayad, J.; Zhang, Y.;
Ying, J. Y. Org. Lett. 2008, 10, 2333–2336.
7. (a) Lapworth, A. J. J. Chem. Soc. 1903, 83, 995–1005; (b) Kuebrich, J. P.; Schowen,
R. L.; Wang, M.; Lupes, M. E. J. Am. Chem. Soc. 1971, 93, 1214–1220.
8. Kawabata, H.; Hayashi, M. Tetrahedron Lett. 2002, 43, 5645–5647.
9. (a) Hünig, S.; Schaller, R. Angew. Chem. Int. Ed. Engl. 1982, 21, 36–49; (b) Hünig,
S.; Wehner, G. Chem. Ber. 1979, 112, 2062–2067.
functional ketones. Therefore, using the synthesized
a,b-unsatu-
10. Synthetic methods of cinnamoyl cyanides, see: (a) Koenig, K. E.; Weber, W. P.
Tetrahedron Lett. 1974, 15, 2275–2278; (b) Tanaka, M.; Kobayashi, T.; Sakakura,
T. Angew. Chem. Int. Ed. Engl. 1984, 23, 518; (c) Murahashi, S.-I.; Naota, T.;
Nakajima, N. Tetrahedron Lett. 1985, 26, 925–928; (d) Sukata, K. Bull. Chem. Soc.
Jpn. 1987, 60, 1085–1089; (e) Murahashi, S.-I.; Naota, T.; Nakajima, N. Chem.
Lett. 1987, 879–882; (f) Murahashi, S.-I.; Naota, T. Synthesis 1993, 433–440; (g)
Bryce, M. R.; Chalton, M. A.; Chesney, A.; Catterick, D.; Yao, J. W.; Howard, J. A.
K. Tetrahedron 1998, 54, 3919–3928.
11. Lewis base catalyzed cyanation reactions of aldehydes, see: (a) Holmes, I. P.;
Kagan, H. B. Tetrahedron Lett. 2000, 41, 7453–7456; (b) Holmes, I. P.; Kagan, H.
B. Tetrahedron Lett. 2000, 41, 7457–7460; (c) Hamashima, Y.; Sawada, D.;
Nogami, H.; Kanai, M.; Shibasaki, M. Tetrahedron 2001, 57, 805–814; (d)
Denmark, S. E.; Chung, W.-J. J. Org. Chem. 2006, 71, 4002–4005; (e) Suzuki, Y.;
Abu Bakar, M. D.; Muramatsu, K.; Sato, M. Tetrahedron 2006, 62, 4227–4231; (f)
Song, J. J.; Gallou, F.; Reeves, J. T.; Tan, Z.; Yee, N. K.; Senanayake, C. H. J. Org.
Chem. 2006, 71, 1273–1276.
rated acyl cyanide, we examined the use of acyl cyanide 2 as an
acylating reagent in the reactions of aromatic organomagnesium
compounds (Scheme 4). The use of catalytic amounts of Fe(acac)3
(5 mol%) was beneficial16c for the reaction of phenylmagnesium
chloride with a yield of 64% and 4-methoxyphenylmagnesium bro-
mide reacted as well, furnishing a new polyfunctional aryl ketone
17b with 94% yield. To the best of our knowledge, this iron cata-
lyzed arylation reaction with
a,b-unsaturated acyl cyanide was
more efficient and economic than any other palladium catalyzed
reaction17a–d with boronic acid or triarylbismuths and gallium
mediated coupling reaction.17e
In summary, stereoselective redox cyanation for synthesis of
12. Trione, C.; Toledo, L. M.; Kuduk, S. D.; Fowler, F. W.; Grierson, D. S. J. Org. Chem.
1993, 58, 2075–2080.
a
,b-unsaturated acyl cyanides was explored. This reaction pro-
ceeded under mild TEA base catalyst and TMSCN and EtOH were