J. Liu et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2376–2379
2379
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
1. Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.
2. Liang, B.; Wang, X.; Wang, J. X. Tetrahedron 2007, 63, 1981.
3. Sortino, M.; Delgado, P. Bioorg. Med. Chem. 2007, 15, 484.
4. Irvine, M. W.; Patrick, G. L. Bioorg. Med. Chem. Lett. 2008, 18, 2032.
5. Song, K. K.; Huang, H.; Han, P.; Zhang, C. L.; Shi, Y.; Chen, Q. X. Biochem. Biophys.
Res. Commun. 2006, 342, 1147.
6. Chen, Q. X.; Liu, X. D.; Huang, H. Biochemistry (Moscow) 2003, 68, 644.
7. Kubo, I.; Nihei, K. I.; Shimizu, K. Bioorg. Med. Chem. Lett. 2004, 12, 5343.
8. Matsuura, R.; Ukeda, H.; Sawamura, M. J. Agric. Food. Chem. 2006, 54, 2309.
9. Yi, W.; Cao, R. Eur. J. Med. Chem. 2010, 45, 639.
10. Gupta, A. K.; Gover, M. D.; Nouri, K. N.; Taylor, S. J. Am. Acad. Dermatol. 2006, 55,
1048.
11. Thanigaimalai, P.; Hoang, T. A. L. Bioorg. Med. Chem. Lett. 2010, 20, 2991.
12. Zhu, Y. J.; Zhou, H. T.; Hu, Y. H. Food Chem. 2011, 124, 298.
13. Ashida, M.; Brey, P. Proc. Natl. Acad. Sci. U.S.A. 1995, 92, 10698.
14. Battaini, G.; Monzani, E.; Casella, L.; Santagostini, L.; Pagliarin, R. J. Biol. Inorg.
Chem. 2000, 5, 262.
Figure 4. The effect of concentrations of tyrosinase on its activity for the catalysis
of -DOPA at different concentration of compound 15. The concentrations of
L
15. Klabunde, T.; Eicken, C. Nat. Struct. Biol. 1998, 5, 1084.
16. Ley, J. P.; Bertram, H. J. Bioorg. Med. Chem. 2001, 9, 1879.
17. Liu, J. B.; Yi, W.; Wan, Y. Q.; Ma, L.; Song, H. C. Bioorg. Med. Chem. 2008, 14,
1096.
compound 15 for curves 1–4 are 0, 0.1, 0.2 and.3 0 mmol/L, respectively.
18. Liu, J. B.; Cao, R. H.; Yi, W.; Ma, C. M.; Wan, Y. Q.; Zhou, B. H.; Ma, L.; Song, H. C.
Eur. J. Med. Chem. 2009, 44, 1773.
compound 15, the compound could exhibit strong affinity for cop-
per ions in the active centre and form a reversible non-covalent
complex with the tyrosinase, and this then reacts to produce the
covalently modified ‘dead-end complex’.
19. Ahmed, N.; Lier, J. E. Tetrahedron Lett. 2007, 48, 5407.
20. General procedures for the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones
(DHPMs) compounds: To a 50 mL flame dried round-bottom flask were added
20 mmol of benzaldehyde, 20 mmol of acetophenone, 20 mmol of urea or
thiourea and 3.5 mmol of MgBr2. The resulting mixture was heated to 100 °C.
After completion of the reaction as indicated by TLC, and then the mixture was
cooled to room temperature and poured into 50 mL ice-water. The solid
product was filtered, washed with ice-water and ethanol (95%), dried, and
recrystallized from 95% ethanol. Compound 11: Yellow solid power, mp 279.6–
The present investigation reported that dihydropyrimidin-
(2H)-one analogues and rhodanine derivatives had potent inhibi-
tory effects on the diphenolase activity of mushroom tyrosinase.
Interestingly, compound 15 was found to be the most potent inhib-
itor with IC50 value of 0.56 mM. Preliminary structure–activity
relationships (SARs) analysis indicated that (1) hydroxyl group in
the benzene ring might play an important role in determining their
inhibitory activities, big groups might cause stereohindrance for
the inhibitors approaching the active site of the enzyme resulting
in the decrease of inhibitory activities, the substituents introduced
in the meta position of the phenyl rings may have hindered docking
of the inhibitor to tyrosinase; (2) the smaller size of the ring in vol-
ume would be beneficial to the molecules to approach the active
centre of the enzyme; (3) rhodanine derivatives bearing a hydroxy-
ethoxyl group at position-4 of phenyl ring might be beneficial to
increase the inhibitory activities. The inhibition mechanism analy-
sis of compound 15 demonstrated that the inhibitory effect of the
compound on the tyrosinase was irreversible.
281.3; IR (KBr, cmÀ1
) m: 3267, 2998, 2889, 1608, 1566, 1505, 1463, 1377, 1329,
1252, 1191, 832; 1H NMR (300 MHz, DMSO-d6): d 10.54(bs, 1H, NH), 9.38 (br s,
1H, NH), 9.16 (s, 1H, OH), 7.10 (d, J = 8.4 Hz, 2H, Ph), 6.71 (d, J = 8.4 Hz, 2H, Ph),
5.19(d, J = 2.7 Hz, 1H, CH), 2.31 (s, 3H, CH3), 2.24 (s, 3H, CH3); 13C NMR
(75 MHz, DMSO-d6): d 196.5, 175.1, 158.9, 149.2, 135.8, 128.5, 115.8, 108.1,
55.8, 31.2, 19.1; MS (ESI): m/z (100%) 263 (M+1).
21. Liu, J. B.; Cao, R. H.; Wang, Z. H.; Peng, W. L.; Song, H. C. Eur. J. Med. Chem. 2009,
44, 1737.
22. Irvine, M. W.; Patrick, G. L.; Kewney, J. Bioorg. Med. Chem. Lett. 2008, 18, 2032.
23. General procedures for the synthesis of Rhodanine derivatives: The mixture of 2-
thioxo-4-thiazolidinone (2.48 mmol), suitable aldehydes (2.54 mmol) and
sodium acetate (7.32 mmol) in acetic acid (30 mL) was heated to reflux for
3–6 h. The reaction was monitored by TLC. After completion of the reaction,
upon cooling of the mixture to room temperature, a precipitate formed which
was collected by filtration, washed with cold ethanol, and dried under vacuum
to provide the target compound. Compound 15: Yellow solid power, mp 197.7–
198.4; IR (KBr, cmÀ1
) m: 3068, 2837, 1726, 1684, 1579, 1502, 1438, 1230, 1201,
1172, 1060, 800; 1H NMR (300 MHz, CDCl3): d 7.63(s, 1H, @CH), 7.46 (d,
J = 8.7 Hz, 2H, Ph), 7.03 (d, J = 8.7 Hz, 2H, Ph), 4.75 (t, J = 4.5 Hz, 2H, OCH2), 4.26
(t, J = 4.5 Hz, 2H, OCH2); 13C NMR (75 MHz, CDCl3): d 196.2, 170.0, 161.8, 143.7,
129.6, 126.4, 117.0, 114.8, 70.3, 60.8; MS (ESI): m/z (100%) 282 (M+1).
24. Shi, Y.; Chen, Q. X.; Wang, Q.; Song, K. K.; Qiu, L. Food Chem. 2005, 92, 707.
25. Lee, H. S. J. Agric. Food. Chem. 2002, 50, 1400.
Acknowledgments
26. Kazuhisa, S.; Koji, N.; Takahisa, N.; Taro, K.; Kenji, S. J. Biosci. Bioeng. 2005, 99,
272.
27. Kim, D.; Park, J.; Kim, J.; Han, C.; Yoon, J.; Kim, N.; Seo, J.; Lee, C. J. Agric. Food.
Chem. 2006, 54, 935.
This work was financially supported by the Foundation of
Education Department of Hunan Province, China (09B091), and
the Key Subject Foundation of Shaoyang University (2008XK201).