578
G. Bernadat et al.
LETTER
(7) Zhang, C.; Herath, K.; Jayasuriya, H.; Ondeyka, J. G.; Zink,
D. L.; Occi, J.; Birdsall, G.; Venugopal, J.; Ushio, M.;
Burgess, B.; Masurekar, P.; Barrett, J. F.; Singh, S. B. J. Nat.
Prod. 2009, 72, 841.
(8) Ashley, E. R.; Cruz, E. G.; Stoltz, B. M. J. Am. Chem. Soc.
2003, 125, 15000.
(9) Magnus, P.; Matthews, K. S. J. Am. Chem. Soc. 2005, 127,
12476.
(10) Rikimaru, K.; Mori, K.; Kan, T.; Fukuyama, T. Chem.
Commun. 2005, 394.
forded the lactol 3 in 95% yield. The chemoselectivity of
this transformation was truly remarkable, since one sec-
ondary alcohol, one tertiary alcohol, one tertiary amine,
and the resulting lactol function were untouched, provid-
ing us with an efficient way to conclude the synthesis
without extra protection/deprotection steps.
In summary, we have developed an asymmetric synthesis
of lemonose in ten steps with 18% overall yield starting
from readily available D-threonine. Key steps involved
were (a) a sequential double addition of Grignard reagent
to Weinreb amide, creating the quaternary centre with the
desired absolute configuration, and (b) one-step conver-
sion of aminotriol 13 into lactol 3 under oxidative condi-
tions. We believe that such a highly chemoselective
oxidative protocol will find application in the synthesis of
other related systems.
(11) Vincent, G.; Chen, Y.; Lane, J. W.; Williams, R. M.
Heterocycles 2007, 72, 385.
(12) Siengalewicz, P.; Brecker, L.; Mulzer, J. Synlett 2008, 2443.
(13) (a) Wu, Y.-C.; Bernadat, G.; Masson, G.; Couturier, C.;
Schlama, T.; Zhu, J. J. Org. Chem. 2009, 74, 2046.
(b) Couturier, C.; Schlama, T.; Zhu, J. Synlett 2006, 1691.
(14) For syntheses of other natural products belonging to the
same family from our group, see: (a) Wu, Y.-C.; Liron, M.;
Zhu, J. J. Am. Chem. Soc. 2008, 130, 7148. (b) Chen, X.;
Zhu, J. Angew. Chem. Int. Ed. 2007, 46, 3962. (c) Chen, J.;
Chen, X.; Willot, M.; Zhu, J. Angew. Chem. Int. Ed. 2006,
45, 8028. (d) Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J.
J. Am. Chem. Soc. 2006, 128, 87. (e) Chen, X. C.; Chen,
J. C.; De Paolis, M.; Zhu, J. J. Org. Chem. 2005, 70, 4397.
(15) (a) Reetz, M. T.; Hüllmann, M.; Seitz, T. Angew. Chem., Int.
Ed. Engl. 1987, 26, 477. (b) Mengel, A.; Reiser, O. Chem.
Rev. 1999, 99, 1191.
(16) (a) Maurer, P. J.; Knudsen, C. G.; Palkowitz, A. D.;
Rapoport, H. J. Org. Chem. 1985, 50, 325. (b) Evans,
D. A.; Hu, E.; Tedrow, J. S. Org. Lett. 2001, 3, 3133.
(17) Selected conditions included: (a) adding HMPT to capture
the counter-ion; (b) adding BF3·OEt2 to pre-complex the
aldehyde, and (c) replacing LDA with KHMDS.
(18) (a) Imamoto, T.; Kusumoto, T.; Tawarayama, Y.; Sugiura,
Y.; Mita, T.; Hatanaka, Y.; Yokoyama, M. J. Org. Chem.
1984, 49, 3904. (b) Paquette, L. A. In Encyclopedia of
Reagents for Organic Synthesis; Paquette, L. A., Ed.; John
Wiley & Sons: New York, 1995, 1031. (c) Greeves, N.;
Lyford, L. Tetrahedron Lett. 1992, 33, 4759.
(19) Sousa, J. A.; Bluhm, A. L. J. Org. Chem. 1960, 25, 108.
(20) For selective oxidation of primary alcohols in the presence
of secondary alcoholic groups with IBX, see: Corey, E. J.;
Palani, A. Tetrahedron Lett. 1995, 36, 3485.
(21) (a) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano,
G. J. Org. Chem. 1995, 60, 7272. (b) Zhdankin, V. V.;
Stang, P. J. Chem. Rev. 2002, 102, 2523. (c) Richardson,
R. D.; Zayed, J. M.; Altermann, S.; Smith, D.; Wirth, T.
Angew. Chem. Int. Ed. 2007, 46, 6529; and references cited
therein. (d) Moorthy, J. N.; Singhal, N.; Senapati, K. Org.
Biomol. Chem. 2007, 5, 767. (e) Moorthy, J. N.; Singhal, N.;
Senapati, K. Tetrahedron Lett. 2008, 49, 80.
Supporting Information for this article is available online at
Acknowledgment
Financial support from CNRS is gratefully acknowledged. G.B.,
N.G and C.C. thank MESR, ICSN and Rhodia, respectively, for
doctoral fellowships.
References and Notes
(1) (a) Whaley, H. A.; Patterson, E. L.; Dann, M.; Shay, A. J.;
Porter, J. N. Antimicrob. Agents Chemother. 1964, 8, 83.
(b) He, H.; Shen, B.; Carter, G. T. Tetrahedron Lett. 2000,
41, 2067.
(2) (a) Scott, J. D.; Williams, R. M. Chem. Rev. 2002, 102,
1669. (b) Siengalewicz, P.; Rinner, U.; Mulzer, J. Chem.
Soc. Rev. 2008, 37, 2676.
(3) (a) Constantine, K. L.; Mueller, L.; Huang, S.; Abid, S.;
Lam, K. S.; Li, W.; Leet, J. E. J. Am. Chem. Soc. 2002, 124,
7284. (b) Leet, J. E.; Li, W.; Ax, H. A.; Matson, J. A.;
Huang, S.; Huang, R.; Cantone, J. L.; Drexler, D.; Dalterio,
R. A.; Lam, K. S. J. Antibiot. 2003, 56, 226. (c) Leet, J. E.;
Li, W.; Ax, H. A.; Matson, J. A.; Huang, S.; Huang, R.;
Cantone, J. L.; Drexler, D.; Dalterio, R. A.; Lam, K. S.
J. Antibiot. 2003, 56, 232.
(4) Sasaki, T.; Otani, T.; Matsumoto, H.; Unemi, N.; Hamada,
M.; Takeuchi, T.; Hori, M. J. Antibiot. 1998, 51, 715.
(5) (a) Steinberg, D. A.; Bernan, V. S.; Montenegro, D. A.;
Abbanat, D. R.; Pearce, C. J.; Korshalla, J. D.; Jacobus,
N. V.; Petersen, P. J.; Mroczenski-Wildey, M. J.; Maiese,
W. M. J. Antibiot. 1994, 47, 887. (b) Northcote, P. T.;
Williams, D.; Manning, J. K.; Borders, D. B.; Maiese,
W. M.; Lee, M. D. J. Antibiot. 1994, 47, 894. (c)Northcote,
P. T.; Siegel, M.; Borders, D. B.; Lee, M. D. J. Antibiot.
1994, 47, 901.
(22) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4155.
(b) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113,
7277. (c) Boeckman, R. K. Jr.; Shao, P.; Mullins, J. J. Org.
Synth. 2000, 77, 141.
(23) (a) Nicolaou, K. C.; Mathison, C. J. N.; Montagnon, T.
Angew. Chem. Int. Ed. 2003, 42, 4077. (b) Nicolaou, K. C.;
Mathison, C. J. N.; Montagnon, T. J. Am. Chem. Soc. 2004,
126, 5192.
(6) (a) Horan, A. C.; Shearer, M. C.; Hegde, V.; Beyazova,
M. L.; Brodsky, B. C.; King, A.; Berrie, R.; Cardaci, K.;
Nimeck, M. J. Antibiot. 1997, 50, 119. (b) Hegde, V. R.;
Patel, M. G.; Das, P. R.; Pramanik, B.; Puar, M. S.
J. Antibiot. 1997, 50, 126.
Synlett 2011, No. 4, 576–578 © Thieme Stuttgart · New York