Journal of the American Chemical Society
ARTICLE
Yagi, K.; Takano, H.; Tamas, L.; Sodeoka, M. J. Am. Chem. Soc. 2002,
124, 14530–14531. (m) Hintermann, L.; Togni, A. Angew. Chem., Int. Ed.
2000, 39, 4359–4362.
(7) Bellezza, F.; Cipiciani, A.; Riccib, G.; Ruzziconib, R. Tetrahedron
2005, 61, 8005–8012.
(18) Qu, R.; Sun, C.; Wang, C.; Ji, C.; Sun, Y.; Guan, L.; Yu, M.;
Cheng, G. Eur. Polym. J. 2005, 41, 1525–1530.
(19) (a) Xu, X.; Wang, K.; Nelson, S. G. J. Am. Chem. Soc. 2007,
129, 11690–11691. (b) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc.
2004, 126, 5352–5353.
(8) (a) Poe, S. L.; Kobaꢁslija, M.; McQuade, D. T. J. Am. Chem. Soc.
2007, 129, 9216–9221. (b) Poe, S. L.; Kobaꢁslija, M.; McQuade, D. T.
J. Am. Chem. Soc. 2006, 128, 15586–15587. (c) Broadwater, S. J.; Roth,
S. L.; Price, K. E.; Kobaꢁslija, M.; McQuade, D. T. Org. Biomol. Chem.
2005, 3, 2899–2906.
(20) (a) Capo, M.; Saa, J. M. J. Am. Chem. Soc. 2004, 126
16738–16739. (b) Leonova, E.; Makarov, M.; Klemenkova, Z.; Odinets,
I. Helv. Chim. Acta 2010, 93, 1990–1999. (c) Chen, C.; Jordan, R. F.
Organometallics 2010, 29, 3679–3680. (d) Wang, G.; Zhao, J.; Zhou, Y.;
Wang, B.; Qu, J. J. Org. Chem. 2010, 75, 5326–5329. (e) Willot, M.;
Chen, J. C.; Zhu, J. Synlett 2009, 577–580. (f) Suresh, A. S.; Sandhu, J. S.
Synth. Commun. 2008, 38, 3655–3661. (g) Hatano, M.; Ikeno, T.;
Matsumura, T.; Torii, S.; Ishihara, K. Adv. Synth. Catal. 2008, 350
1776–1780. (h) Messer, R.; Fuhrer, C. A.; Haener, R. Nucleosides,
Nucleotides Nucleic Acids 2007, 26, 701–704. (i) Moussaoui, Y.; Ben
Salem, R. Phys. Chem. News 2005, 22, 75–79. (j) Yousefi, R.; Azizi, N.;
Saidi, M. R. J. Organomet. Chem. 2005, 690, 76–78. (k) Kinart, W. J.;
Sniec, E.; Tylak, I.; Kinart, C. M. Phys. Chem. Liq. 2000, 38, 193–201.
(l) Desimoni, G.; Faita, G.; Righetti, P. P.; Tacconi, G. Tetrahedron
1991, 47, 8399–8406.
(21) (a) Henry, K. J.; Grieco, P. A. J. Chem. Soc., Chem. Commun.
1993, 6, 510–512. (b) Grieco, P. A.; Beck, J. P. Tetrahedron Lett. 1993,
34, 7367–7370. (c) Grieco, P. A.; Collins, J. L.; Handy, S. T. Synlett
1995, 1155–1157. (d) Grieco, P. A.; Kaufman, M. D.; Daeuble, J. F.;
Saito, N. J. Am. Chem. Soc. 1996, 118, 2095–2096. (e) Grieco, P. A.; May,
S. A.; Kaufman, M. D. Tetrahedron Lett. 1998, 39, 7047–7050. (f) May,
S. A.; Grieco, P. A.; Lee, H.-H. Synlett 1997, 493–494. (g) Hunt, K. W.;
Grieco, P. A. Org. Lett. 2001, 3, 481–484.
(9) (a) Paull, D. H.; Abraham, C. J.; Scerba, M. T.; Alden-Danforth,
E.; Lectka, T. Acc. Chem. Res. 2008, 41, 655–663. (b) Paull, D. H.;
Alden-Danforth, E.; Wolfer, J.; Dogo-Isonagie, C.; Abraham, C. J.; Lectka, T.
J. Org. Chem. 2007, 72, 5380–5382. (c) France, S.; Wack, H.; Taggi,
A. E.; Hafez, A. M.; Wagerle, T. R.; Shah, M. H.; Dusich, C. L.; Lectka, T.
J. Am. Chem. Soc. 2004, 126, 4245–4255. (d) Peng, J.; Cui, H. L.; Chen,
Y. C. Sci. China Chem. 2011, 54, 81–86. (e) Li, X.-J.; Peng, F.-Z.; Li, X.;
Wu, W.-T.; Sun, Z.-W.; Li, Y.-M.; Zhang, S.-X.; Shao, Z.-H. Chem.—
Asian J. 2011, 6, 220–225. (f) Blaszczyk, R.; Gaida, A.; Zawadzki, S.;
Czubacka, E.; Gaida, T. Tetrahedron 2010, 66, 9840–9848. (g) Han, X.;
Zhong, F.; Lu, Y. Adv. Synth. Catal. 2010, 352, 2778–2782. (h) Shae, P.-L.;
Chen, X.-Y.; Ye, S. Angew. Chem., Int. Ed. 2010, 49, 8412–8416. (i) Kuang,
Y.-Y.; Niu, J.-Z.; Chen, F.-E. Helv. Chim. Acta 2010, 93, 2094–2099.
(10) (a) Sodeoka, M.; Hamashima, Y. Chem. Commun. 2009,
39, 5787–5798. (b) Hamashima, Y.; Sasamoto, N.; Umebayashi, N.;
Sodeoka, M. Chem.—Asian J. 2008, 3, 1443–1455. (c) Dubs, C.;
Hamashima, Y.; Sasamoto, N.; Seidel, T. M.; Suzuki, S.; Hashizume,
D.; Sodeoka, M. J. Org. Chem. 2008, 73, 5859–5871. (d) Sodeoka, M.;
Hamashima, Y. Pure Appl. Chem. 2008, 80, 763–776. (e) Monguchi, D.;
Beemelmanns, C.; Hashizume, D.; Hamashima, Y.; Sodeoka, M. J.
Organomet. Chem. 2008, 693, 867–873. (f) Suzuki, T.; Goto, T.;
Hamashima, Y.; Sodeoka, M. J. Org. Chem. 2007, 72, 246–250. (g)
Sasamoto, N.; Dubs, C.; Hamashima, Y.; Sodeoka, M. J. Am. Chem. Soc.
2006, 128, 14010–14011.
(22) Hafez, A. M.; Taggi, A. E.; Wack, H.; Esterbrook, J.; Lectka, T.
Org. Lett. 2001, 3, 2049–2051.
(23) Calter, M. A.; Guo, X. J. Org. Chem. 1998, 63, 5308–5309.
(24) Abraham, C. J.; Paull, D. H.; Bekele, T.; Scerba, M. T.; Dudding,
T.; Lectka, T. J. Am. Chem. Soc. 2008, 130, 17085–17094.
(25) (a) Ma, Y.; Hoepker, A. C.; Gupta, L.; Faggin, M. F.; Collum,
D. B. J. Am. Chem. Soc. 2010, 132, 15610–15623. (b) Ramirez, A.; Sun,
X.; Collum, D. B. J. Am. Chem. Soc. 2006, 128, 10326–10336. (c) Liou, L.
R; McNeil, A. J.; Ramirez, A.; Toombes, G. E. S.; Gruver, J. M.; Collum,
D. B. J. Am. Chem. Soc. 2008, 130, 4859–4868.
(11) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem.
Soc. 1998, 120, 4548–4549.
(12) Paull, D. H.; Scerba, M. T.; Alden-Danforth, E.; Widger, L. R.;
Lectka, T. J. Am. Chem. Soc. 2008, 130, 17260–17261.
(13) Davis, F. A.; Kasu, P. V. N. Tetrahedron Lett. 1998, 39, 6135–6138.
(14) (R)-N-(Benzyloxy)-2-fluoro-2-(4-methoxyphenyl)-N-methy-
lacetamide was synthesized in 45% yield, >99% ee. See Supporting
Information for details.
(26) UV data were collected using acetonitrile as the solvent in order
to observe the region of interest. No displacement of catalyst ligands by
the solvent was observed by 31P NMR.
(27) Schreiber, S. L. U.S. Patent 4,322,537, 1982.
(15) (a) Paull, D. H.; Weatherwax, A.; Lectka, T. Tetrahedron 2009,
65, 6771–6803. (b) France, S.; Weatherwax, A.; Lectka, T. Eur. J. Org.
Chem. 2005, 475–479.
(28) Taggi, A. E.; Wack, H.; Hafez, A. M.; France, S.; Lectka, T. Org.
Lett. 2002, 4, 627–629.
(29) (a) Fu, S.; Lian, X.; Ma, T.; Chen, W.; Zheng, M.; Zeng, W.
Tetrahedron Lett. 2010, 51, 5834–5837. (b) El-Ayache, N. C.; Li, S.-H.;
Warnock, M.; Lawrence, D. A.; Emal, C. D. Bioorg. Med. Chem. Lett.
2010, 20, 966–970. (c) Thomas, B. H.; Shafer, G.; Ma, J. J.; Tu, M.-H.;
DesMarteau, D. D. J. Fluorine Chem. 2004, 125, 1231–1240.
(d) DesMarteau, D. D.; Zhu, S.; Pennington, W. T.; Gotoh, Y; Witz,
M.; Zuberi, S. J. Fluorine Chem. 1989, 45, 24. (e) Foropoulos, J. F.;
DesMarteau, D. D. Inorg. Chem. 1984, 23, 3720–3723. (f) Koppel, I. A.;
Taft, R. W.; Anvia, F.; Zhu, S.-Z.; Hui, L.-Q.; Sung, K.-S.; DesMarteau,
D. D.; Yagupolskii, Y. L.; Yagupolskii, L. M. J. Am. Chem. Soc. 1994,
116, 3047–3057.
(30) (a) Bose, A. K.; Kugajevsky, I. Tetrahedron 1967, 23, 1489–1497.
(b) Meij, R.; Stufkens, D. J.; Vrieze, K.; Van Gerresheim, W.; Stam, C. H.
J. Organomet. Chem. 1979, 164, 353–370.
(31) Del Bene, J. E.; Perera, S. A.; Bartlett, R. J.; Yanez, M.; Mo, O.;
Elguero, J.; Alkorta, I. J. Phys. Chem. A 2003, 107, 3126–3131.
(32) For a recent review, see: Balcells, D.; Maseras, F. New J. Chem.
2007, 31, 333–343.
(16) (a) Taggi, A. E.; Hafez, A. H; Wack, H.; Young, B.; Ferraris, D.;
Lectka, T. J. Am. Chem. Soc. 2002, 124, 6626–6635. (b) Rosner, T.; Le
Bars, J.; Pfaltz, A.; Blackmond, D. G. J. Am. Chem. Soc. 2001,
123, 1848–1855. (c) Kitamura, M.; Tsukamoto, M.; Bessho, Y.;
Yoshimura, M.; Kobs, U.; Widhalm, M.; Noyori, R. J. Am. Chem. Soc.
2002, 124, 6649–6667. (d) Nielsen, L. P. C.; Stevenson, C. P.; Blackmond,
D. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2004, 126, 1360–1362.
(e) Jacobsen, E. N.; Marko, I.; France, M. B.; Svendsen, J. S.; Sharpless,
K. B. J. Am. Chem. Soc. 1989, 111, 737–739. (f) Blackmond, D. G. J. Am.
Chem. Soc. 2001, 123, 545–553. (g) Blackmond, D. G.; Hodnett, N. S.;
Lloyd-Jones, G. C. J. Am. Chem. Soc. 2006, 128, 7450–7451. (h) Buono,
F. G.; Blackmond, D. G. J. Am. Chem. Soc. 2003, 125, 8978–8979.
(i) Mueller, J. A.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 7005–7013.
(j) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem.
Soc. 2010, 132, 9688–9692. (k) Shintani, R.; Tsuji, T.; Park, S.; Hayashi,
T. J. Am. Chem. Soc. 2010, 132, 7508–7513. (l) Novstrup, K. A.; Travia,
N. E.; Medvedev, G. A.; Stanciu, C.; Switzer, J. M.; Thomson, K. T.;
Delgass, W. N.; Abu-Omarm, M. M.; Caruthers, J. M. J. Am. Chem. Soc.
2010, 132, 558–566. (m) Yin, C.-X.; Finke, R. G. J. Am. Chem. Soc. 2005,
127, 13988–13996.
(33) Calculations were performed using the Gaussian ‘09 and
GaussView v5.08 programs at the KohnꢀSham hybrid-DFT B3LYP
level of theory, and the GenECP method was employed using a
6-31G(d) basis set for all atoms (i.e., C, N, O, F, S, P, Cl) expect
palladium which was computed using the well-known Los Alamos
LAN2DZ basis set.
(17) (a) Anslyn, E. V.; Dougherty, D. A. Modern Physical Organic
Chemistry; University Science Books: Sausalito, CA, 2006. (b) Giagou,
T.; Meyer, M. P. Chem.—Eur. J. 2010, 16, 10616–10628.
7545
dx.doi.org/10.1021/ja2014345 |J. Am. Chem. Soc. 2011, 133, 7536–7546