10.1002/adsc.201901525
Advanced Synthesis & Catalysis
future and to contribute to further research of β-
[5] a) P. Xu, A. Abdukader, K. Hu, Y. Cheng, C. Zhu,
Chem. Commun. 2014, 50, 2308-2310; b) X. Wei, W.
Boon, V. Hessel, T. Noöl, ACS Catal. 2017, 7, 7136-
7140; c) H. Huang, K. Jia, Y. Chen, Angew. Chem. Int.
Ed. 2015, 54, 1881-1884.
ketosulfones.
Experimental Section
[6] a) H. Cao, H. Jiang, H. Feng, J. M. C. Kwan, X. Liu, J.
Wu, J. Am. Chem. Soc. 2018, 140, 16360-16367; b) J.
Zhang, J. Yang, L. Guo, X. Duan, Chem. Eur. J. 2017,
23, 10259-10263.
General experimental procedure for the synthsis of β-
ketosulfones 3. A round bottom flask (10 mL) equipped
with a magnetic stir bar was charged with an atropic acid 1
(0.2 mmol, 1.0 eq.), a sulfonyl hydrazide 2 (0.3 mmol, 1.5
eq.), Fl (0.006 mmol, 3 mol%), NaHCO3 (0.2 mmol, 1.0
eq.), KI (0.2 mmol, 1.0 eq.) and MeCN/H2O (v/v = 5.5:1,
1.56 mL). The mixture was irradiated by a 23 W CFL
(Philips, 220 V, 50 Hz, 400-780 nm, no any filters, placed
approximately 2.5 cm from the flask) under a balloon of O2
at rt. After completion of the reaction (monitored by TLC),
the reaction mixture was concentrated under reduced
pressure, and the resulting residue was treated with water
and extracted with EtOAc. The combined organic layers
were washed with brine, dried over anhydrous Na2SO4,
and concentrated under reduced pressure. The crude
product was purified by silica gel column chromatography
using petroleum ether/ethyl acetate as eluent to give the
desired product β-ketosulfones 3 (in 15-91% yields).
The same procedure was applied for the synthesis of
1-phenyl-2-(phenylsulfonyl)ethan-1-one (3aa) from 2-
phenylacrylic acid (1a) and sodium benzene sulfinate (4)
except using 4 instead of sulfonyl hydrazide (2), and 3aa
was obtained in 60% yield.
[7] a) C. Curti, M. Laget, A. O. Carle, A. Gellis, P.
Vanelle, Eur. J. Med. Chem. 2007, 42, 880-884; b) K.
Inanaga, T. Fukuyama, M. Kubota, Y. Komatsu, H.
Chiba, A. Kayano, K. Tagami, Org. Lett. 2015, 17,
3158-3161.
[8] a) M. Y. Chang, H. Y. Chen, Y. L. Tsai, J. Org. Chem.
2019, 84, 326-337; b) B. S. Gore, C. C. Lee, J. Lee, J. J.
Wang, Adv. Synth. Catal. 2019, 361, 3373-3386; c) C.
Li, Q. Zhang, X. Tong, Chem. Commun. 2010, 46,
7828-7830; d) M. T. Saraiva, G. P. Costa, N. Seus, R. F.
Schumacher, G. Perin, M. W. Paixao, R. Luque, D.
Alves, Org. Lett. 2015, 17, 6206-6209; e) Y.-D. Shao,
D.-J. Cheng, Adv. Synth. Catal. 2017, 359, 2549-2556.
[9] a) V. S. Rawat, P. L. M. Reddy, B. Sreedhar, RSC Adv.
2014, 4, 5165-5168; b) Y.-Y. Xie, Z.-C. Chen, Synth.
Commun. 2001, 31, 3145-3149.
Acknowledgements
This work was financially supported by the National Natural
Science Foundation of China (No. 21672174 and 21977084), and
the Natural Science Foundation of Chongqing (No. cstc2019jcyj-
msxmX0297)
[10] a) Q. Lu, J. Zhang, G. Zhao, Y. Qi, H. Wang, A. Lei,
J. Am. Chem. Soc. 2013, 135, 11481-14493; b) T.-F.
Niu, J. Cheng, C.-L. Zhuo, D.-Y. Jiang, X.-G. Shu, B.-
Q. Ni, Tetrahedron Lett. 2017, 58, 3667-3671; c) H.
Wang, G. Wang, Q. Lu, C. W. Chiang, P. Peng, J. Zhou,
A. Lei, Chem. Eur. J. 2016, 22, 14489-14493; d) W.
Wei, C. Liu, D. Yang, J. Wen, J. You, Y. Suo, H. Wang,
Chem. Commun. 2013, 49, 10239-10241; e) L. Xie, X.
Zhen, S. Huang, X. Su, M. Lin, Y. Li, Green Chem.
2017, 19, 3530-3534; f) S. Cai, D. Chen, Y. Xu, W.
Weng, L. Li, R. Zhang, M. Huang, Org. Biomol. Chem.
2016, 14, 4205-4209; g) N. Kumar, A. Kumar, ACS
Sustainable Chem. Eng. 2019, 7, 9182-9188; h) A. K.
Singh, R. Chawla, L. D. S. Yadav, Tetrahedron Lett.
2014, 55, 4742-4746; i) D. Yang, B. Huang, W. Wei, J.
Li, G. Lin, Y. Liu, J. Ding, P. Sun, H. Wang, Green
Chem. 2016, 18, 5630-5634; j) T. Niu, D. Jiang, B. Ni,
Tetrahedron Lett. 2017, 58, 4299-4303; k) X. Gong, Y.
Ding, X. Fan, J. Wu, Adv. Synth. Catal. 2017, 359,
2999-3004.
References
[1] a) L. J. Goossen, N. Rodriguez, K. Goossen, Angew.
Chem. Int. Ed. 2008, 47, 3100-3120; b) C. Shen, P.
Zhang, Q. Sun, S. Bai, T. S. Hor, X. Liu, Chem. Soc.
Rev. 2015, 44, 291-314; c) N. Rodriguez, L. J. Goossen,
Chem. Soc. Rev. 2011, 40, 5030-5048.
[2] J. Bojanowski, A. Albrecht, Asian J. Org. Chem. 2019,
8, 746-754.
[3] a) Z. Zuo, D. W. C. Macmillan, J. Am. Chem. Soc.
2014, 136, 5257-5260; b) Y. Sakakibara, P. Cooper, K.
Murakami, K. Itami, Chem. Asian. J. 2018, 13, 2410-
2413; c) J. D. Griffin, M. A. Zeller, D. A. Nicewicz, J.
Am. Chem. Soc. 2015, 137, 11340-11348; d) Y. Wei, P.
Hu, M. Zhang, W. Su, Chem. Rev. 2017, 117, 8864-
8907; e) J. Xuan, Z. G. Zhang, W. J. Xiao, Angew.
Chem. Int. Ed. 2015, 54, 15632-15641; e) Y. Yoshimi,
J. Photochem. Photobiol. A 2017, 342, 116-130; f) S.
Mumtaz, M. J. Robertson, M. Oelgemöller, Aust. J.
Chem. 2018, 71, 634-648.
[11] a) Y.-S. Xiong, J. Weng, G. Lu, Adv. Synth. Catal.
2018, 360, 1611-1616; b) R. Chawla, R. Kapoor, L. D.
S. Yadav, Tetrahedron Lett. 2019, 60, 150964-150964;
c) Q. Lu, J. Zhang, P. Peng, G. Zhang, Z. Huang, H. Yi,
J. T. Miller, A. Lei, Chem. Sci. 2015, 6, 4851-4854.
[12] a) Z. Q. Xu, L. C. Zheng, L. Li, L. Duan, Y. M. Li,
Org. Biomol. Chem. 2019, 17, 898-907; b) T.
Taniguchi, A. Idota, H. Ishibashi, Org. Biomol. Chem.
2011, 9, 3151-3153; c) X. Li, X. Xu, C. Zhou, Chem.
Commun. 2012, 48, 12240-12242; d) S. Tang, Y. Wu,
W. Liao, R. Bai, C. Liu, A. Lei, Chem. Commun. 2014,
50, 4496-4499; e) Z.-Z. Chen, S. Liu, W.-J. Hao, G. Xu,
S. Wu, J.-N. Miao, B. Jiang, S.-L. Wang, S.-J. Tu, G.
Li, Chem. Sci. 2015, 6, 6654-6658; f) W. Wei, J. Wen,
[4] a) J. Liu, Q. Liu, H. Yi, C. Qin, R. Bai, X. Qi, Y. Lan,
A. Lei, Angew. Chem. Int. Ed. 2014, 53, 502-506; b) L.
Chu, J. M. Lipshultz, D. W. C. MacMillan, Angew.
Chem. Int. Ed. 2015, 54, 7929-7933; c) H. Huang, G.
Zhang, Y. Chen, Angew. Chem. Int. Ed. 2015, 54,
7872-7876; d) G.-Z. Wang, R. Shang, W.-M. Cheng, Y.
Fu, Org. Lett. 2015, 17, 4830-4833.
5
This article is protected by copyright. All rights reserved.