ORGANIC
LETTERS
2011
Vol. 13, No. 10
2702–2705
Generation and Spectroscopic Profiles of
Stable Multiarylaminium Radical Cations
Bridged by Fluorenes
Chao-Che Chang, Han Yueh, and Chao-Tsen Chen*
Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, R.O.C.
Received March 26, 2011
ABSTRACT
A series of arylaminofluorene derivatives (DTFA-1, TTFA-2, TAFB-3, and TAFA-4) were synthesized, and the generation of their corresponding
arylaminium cation radicals was readily achieved by Cu(ClO4)2 in CH3CN. Moreover, the cation radicals were stable at ambient temperature with
substantially long life times and exhibited distinct colors. The oxidation mechanism and spectroscopic features of the resulting cation radicals
were probed by UVꢀvisꢀNIR spectroscopy and electron spin resonance experiments.
Triarylamine-based compounds have been found in
many applications such as organic optoelectronics,1
electrochromism,2 organic magnets,3 intervalence charge-
transfer (IVCT),4 metal ion sensors,5 and synthetic
utilities.6 Most of these applications stem from the un-
shared lone pair of electrons at the nitrogen, which can be
readily converted to cation radicals at a moderate oxidiz-
ing potential. Organic magnets and organic mixed-valence
(MV) compounds all possess two or more triarylamino
centers connected by extended π-conjugated molecular
bridges.4a,c,g,h Arylaminium cation radicals warrant a sig-
nificant spin concentration for spin-mediated organic mo-
lecular spintronics as well as an intense and well-separated
IVCT band to allow accurate estimation of electronic
coupling and valence delocalization. The bridging struc-
tures have a strong influence on the chemical stability and
spin alignment of cation radicals as well as the efficiency of
intersite electron coupling.
(1) (a) Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953. (b) Chi,
C.-C.; Chiang, C.-L.; Liu, S.-W.; Yueh, H.; Chen, C.-T.; Chen, C.-T. J.
Mater. Chem. 2009, 19, 5561.
(2) Lim, B.; Nah, Y.-C.; Hwang, J.-T.; Ghim, J.; Vak, D.; Yun, J.-M.;
Kim, D.-Y. J. Mater. Chem. 2009, 19, 2380.
(3) (a) Yan, X. Z.; Pawlas, J.; Goodson, T.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 9105. (b) Fukuzaki, E.; Nishide, H. J. Am. Chem.
Soc. 2006, 128, 996 and references therein. (c) Kulszewicz-Bajer, I.;
Gosk, J.; Pawzowski, M.; Gambarelli, S.; Djurado, D.; Twardowski, A.
J. Phys. Chem. B 2007, 111, 9421. (d) Ito, A.; Sakamaki, D.; Ino, H.;
Taniguchi, A.; Hirao, Y.; Tanaka, K.; Kanemoto, K.; Kato, T. Eur. J.
Org. Chem. 2009, 4441.
(4) (a) Lambert, C.; Noll, G. J. Am. Chem. Soc. 1999, 121, 8434. (b)
Lambert, C.; Noll, G.; Schelter, J. Nat. Mater. 2002, 1, 69. (c) Lambert,
C.; Risko, C.; Coropceanu, V.; Schelter, J.; Amthor, S.; Gruhn, N. E.;
ꢀ
Durivage, J. C.; Bredas, J.-L. J. Am. Chem. Soc. 2005, 127, 8508. (d)
€
Seibt, J.; Schaumloffel, A.; Lambert, C.; Engel, V. J. Phys. Chem. A
2008, 112, 10178. (e) Nelsen, S. F.; Ismagilov, R. F.; Trieber, D. A.
Science 1997, 278, 846. (f) Jones, S. C.; Coropceanu, V.; Barlow, S.;
Kinnibrugh, T.; Timofeeva, T.; Bredas, J.-L.; Marder, S. R. J. Am.
The generation of arylaminium cation radicals can be
achieved either by electrochemical oxidation or chemical oxi-
dants such as certain metal ions,7 zeolite,8 and protic acids.9
Although electrochemical anodic oxidation12 warrants
ꢀ
Chem. Soc. 2004, 126, 11782. (g) Barlow, S.; Risko, C.; Chung, S.-J.;
ꢀ
Tucker, N. M.; Coropceanu, V.; Jones, S. C.; Levi, Z.; Bredas, J.-L.;
Marder, S. R. J. Am. Chem. Soc. 2005, 127, 16900. (h) Coropceanu, V.;
€
Gruhn, N. E.; Barlow, S.; Lambert, C.; Durivage, J. C.; Bill, T. G.; Noll,
ꢀ
G.; Marder, S. R.; Bredas, J.-L. J. Am. Chem. Soc. 2004, 126, 2727. (i)
Lancaster, K.; Odom, S. A.; Jones, S. C.; Thayumanavan, S.; Marder,
(6) (a) Sumalekshmy, S.; Gopidas, K. R. Chem. Phys. Lett. 2005, 413,
294. (b) Sreenath, K.; Suneesh, C. V.; Ratheesh Kumar, V. K.; Gopidas,
K. R. J. Org. Chem. 2008, 73, 3245.
ꢀ
S. R.; Bredas, J.-L.; Coropceanu, V.; Barlow, S. J. Am. Chem. Soc. 2009,
131, 1717 and references therein. (j) Odom, S. A.; Lancaster, K.;
(7) Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877.
(8) Garcia, H.; Marti, V.; Casades, I.; Fornes, V.; Roth, H. D. Phys.
Chem. Chem. Phys. 2001, 3, 2955.
ꢀ
Beverina, L.; Lefler, K. M.; Thompson, N. J.; Coropceanu, V.; Bredas,
J.-L.; Marder, S. R.; Barlow, S. Chem.;Eur. J. 2007, 13, 9637.
ꢀ
(5) Sanna, E.; Martinez, L.; Rotger, C.; Blasco, S.; Gonzalez, J.;
~
Garcia-Espana, E.; Costa, A. Org. Lett. 2010, 12, 3840.
(9) Davies, A. G. J. Chem. Res., Synop. 2001, 253.
r
10.1021/ol2007988
Published on Web 04/25/2011
2011 American Chemical Society