2222
D. Beaudoin, J. D. Wuest / Tetrahedron Letters 52 (2011) 2221–2223
O
Acknowledgments
N
N
1)
N
N
We are grateful to the Natural Sciences and Engineering Re-
H
N
search Council of Canada, the Ministère de l’Éducation du Québec,
the Canada Foundation for Innovation, the Canada Research Chairs
Program, and the Université de Montréal for financial support.
OH
O
Me3Si
Me3Si
OR
O
2) NH2OH
R = H
TBSCl/Et3N
Supplementary data
3 (R = TBS)
Supplementary data (characterizations of all new compounds)
associated with this article can be found, in the online version, at
Scheme 1.
TeocNHOTBS ( 3; 1.1 eq)
Pd2dba3 (2.5 mol% Pd)
Bippyphos (2; 5.0 mol%)
Cs2CO3 (2.0 eq)
References and notes
1. For recent references, see: Rios, R.; Ibrahem, I.; Vesely, J.; Zhao, G.-L.; Córdova,
A. Tetrahedron Lett. 2007, 48, 5701–5705; Evans, D. A.; Song, H.-J.; Fandrick, K.
R. Org. Lett. 2006, 8, 3351–3354; Chatterjee, A.; Bhattacharya, P. K. J. Org. Chem.
2006, 71, 345–348; Sridharan, V.; Karthikeyan, K.; Muthusubramanian, S.
Tetrahedron Lett. 2006, 47, 4221–4223; Ding, X.; Taniguchi, K.; Hamamoto, Y.;
Sada, K.; Fujinami, S.; Ukaji, Y.; Inomata, K. Bull. Chem. Soc. Jpn. 2006, 79, 1069–
1083; Srivastava, R. S.; Khan, M. A.; Nicholas, K. M. J. Am. Chem. Soc. 2005, 127,
7278–7279; Young, I. S.; Williams, J. L.; Kerr, M. A. Org. Lett. 2005, 7, 953–955;
Murugan, E.; Siva, A. Synthesis 2005, 2022–2028; Tian, L.; Xu, G.-Y.; Ye, Y.; Liu,
L.-Z. Synthesis 2003, 1329–1334; Takeuchi, H.; Tateiwa, J.-i.; Hata, S.; Tsutsumi,
K.; Osaki, Y. Eur. J. Org. Chem. 2003, 3920–3922; Yadav, J. S.; Reddy, B. V. S.;
Sreedhar, P. Adv. Synth. Catal. 2003, 345, 564–567; Spence, J. D.; Raymond, A. E.;
Norton, D. E. Tetrahedron Lett. 2003, 44, 849–851; Ho, C.-M.; Lau, T.-C. New J.
Chem. 2000, 24, 859–863; Heydari, A.; Larijani, H.; Emami, J.; Karami, B.
Tetrahedron Lett. 2000, 41, 2471–2473; Romine, J. L. Org. Prep. Proc. Int. 1996, 28,
249–288.
2. For recent references, see: Rong, Z.; Du, W.; Wang, Y.; Lu, L. Chem. Commun.
2010, 46, 1559–1561; Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Synlett
2009, 798–802; Liu, S.; Wang, Y.; Jiang, J.; Jin, Z. Green Chem. 2009, 11, 1397–
1400; Takenaka, Y.; Kiyosu, T.; Choi, J.-C.; Sakakura, T.; Yasuda, H. Green Chem.
2009, 11, 1385–1390; Shi, Q. X.; Lu, R. W.; Jin, K.; Zhang, Z. X.; Zhao, D. F. Chem.
Lett. 2006, 35, 226–227; Ung, S.; Falguières, A.; Guy, A.; Ferroud, C. Tetrahedron
Lett. 2005, 46, 5913–5917; Li, F.; Cui, J.; Qian, X.; Zhang, R.; Xiao, Y. Chem.
Commun. 2005, 1901–1903; Kim, B. H.; Cheong, J. W.; Han, R.; Jun, Y. M.; Baik,
W.; Lee, B. M. Synth. Commun. 2001, 31, 3577–3586.
3. For recent references, see: Johansson, E.; Parkinson, G. N.; Denny, W. A.; Neidle,
S. J. Med. Chem. 2003, 46, 4009–4020; McGill, A. D.; Zhang, W.; Wittbrodt, J.;
Wang, J.; Schlegel, H. B.; Wang, P. G. Bioorg. Med. Chem. 2000, 8, 405–412;
Smith, D. G.; Gribble, A. D.; Haigh, D.; Ife, R. J.; Lavery, P.; Skett, P.; Slingsby, B.
P.; Stacey, R.; Ward, R. W.; West, A. Bioorg. Med. Chem. Lett. 1999, 9, 3137–3142.
4. Miller, J. A. Cancer Res. 1970, 30, 559–576.
5. For recent references, see: Khan, F. D.; Vyas, P. M.; Gaspari, A. A.; Svensson, C. K.
J. Pharm. Exp. Ther. 2007, 323, 771–777; Kurian, J. R.; Chin, N. A.; Longlais, B. J.;
Hayes, K. L.; Trepanier, L. A. Chem. Res. Toxicol. 2006, 19, 1366–1373; Ahmad, F.;
Hughes, J. B. Environ. Sci. Technol. 2002, 36, 4370–4381; Haack, T.; Erdinger, L.;
Boche, G. Mutat. Res. 2001, 491, 183–193; Bolchoz, L. J. C.; Budinsky, R. A.;
McMillan, D. C.; Jollow, D. J. J. Pharm. Exp. Ther. 2001, 297, 509–515.
6. Pereira, M. M. A.; Santos, P. P. In The Chemistry of Hydroxylamines, Oximes and
Hydroxamic Acids. Part 1; Rappoport, Z., Liebman, J. F., Eds.; John Wiley & Sons:
Chichester, 2009; pp. 343–498.
TBAF (4.0 eq)
THF/40 °C/90 min
Teoc
Ar
X
Ar
N
Ar NHOH
OTBS
PhMe/80 °C/16 h
5a-g
4a-h
Scheme 2.
Table 1
Pd-catalyzed coupling of aryl halides with TeocNHOTBS (3) and subsequent depro-
tection to give N-arylhydroxylamines
Entry
Ar-X
Ar-N(Teoc)OTBS (% yield)
Ar-NHOH (% yield)
1
2
3
4
5
6
7
8
9
C6H5Br
C6H5I
4a (96)
4a (81)
4b (95)
4c (84)
4d (90)
4e (96)
4f (79)
4g (73)
4h (<5)
5a (85)
—
4-MeC6H4Br
4-ClC6H4Br
3-CNC6H4Br
4-CO2EtC6H4Br
4-NO2C6H4I
3,5-Me2C6H3I
2-MeC6H4I
5b (83)
5c (88)
5d (92)
5e (95)
5f (79)
5g (42)
—
silyl)ethyl carbamate.18 The conditions used by Tomkinson and co-
workers to couple aryl halides with BocNHOTBS gave only modest
yields when applied to analog 3, but we found that the combina-
tion of Bippyphos (2) with dibenzylideneacetone (dba) complex
Pd2dba3 was generally very effective (Scheme 2, Table 1).19 Aryl
bromides were found to give higher yields than iodides. Hindered
substrates coupled poorly and gave only traces of product, even at
elevated temperatures (entry 9). In the cases studied, coupled
products could be deprotected efficiently with tetrabutylammo-
nium fluoride (TBAF) in THF to give the desired N-arylhydroxylam-
ines in pure form.20,21 No examples with highly electron-donating
substituents such as methoxy were examined because N-arylhydr-
oxylamines of this type are known to be particularly prone to deg-
radation.22 The relatively low overall yield in Entry 8 presumably
reflects the inherent instability of N-arylhydroxylamines with elec-
tron-donating groups; nevertheless, our methodology is effective
even in this demanding example.
7. Bamberger, E. Ber. Dtsch. Chem. Ges. 1894, 27, 1548–1557; Bamberger, E. Ber.
Dtsch. Chem. Ges. 1894, 27, 1347–1350.
8. Fishbein, J. C.; McClelland, R. A. Can. J. Chem. 1996, 74, 1321–1328; Novak, M.;
Kahley, M. J.; Lin, J.; Kennedy, S. A.; James, T. G. J. Org. Chem. 1995, 60, 8294–
8304.
9. Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Eur. J. Org. Chem. 2008, 5135–
5143.
10. Schmidt, A. Sci. Synth. 2007, 31b, 1739–1772.
11. Melman, A. In The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids.
Part 1; Rappoport, Z., Liebman, J. F., Eds.; John Wiley & Sons: Chichester, 2009;
pp. 117–162.
12. Oxley, P. W.; Adger, B. M.; Sasse, M. J.; Forth, M. A. In Organic Syntheses; Wiley:
New York, 1993; Collect. Vol. 8, pp. 16–19; Kamm, O. In Organic Syntheses;
Wiley: New York, 1941; Collect. Vol. 1, pp. 435–437; Marvel, C. S.; Kamm, O. J.
Am. Chem. Soc. 1919, 41, 276–282.
13. Smith, P. A. S. In The Chemistry of Open-Chain Organic Nitrogen Compounds;
Benjamin: New York, 1966; Vol. 2, p.15.
14. Porzelle, A.; Woodrow, M. D.; Tomkinson, N. C. O. Org. Lett. 2009, 11, 233–236.
15. Jones, K. L.; Porzelle, A.; Hall, A.; Woodrow, M. D.; Tomkinson, N. C. O. Org. Lett.
2008, 10, 797–800; Peng, J.; Lin, W.; Yuan, S.; Chen, Y. J. Org. Chem. 2007, 72,
3145–3148; Peng, J.; Jiang, D.; Lin, W.; Chen, Y. Org. Biomol. Chem. 2007, 5,
1391–1396; Dongol, K. G.; Tay, B. Y. Tetrahedron Lett. 2006, 47, 927–930.
16. Withbroe, G. J.; Singer, R. A.; Sieser, J. E. Org. Process Res. Dev. 2008, 12, 480–
489.
These results gave us confidence that our modified method
could be used to make more complex N-arylhydroxylamines such
as compound 1a.23 Indeed, coupling of tetrabromide 1c24 under
the standard conditions of Scheme 2 gave a 62% yield of protected
derivative 1d, which was then converted by the action of TBAF into
target 1a in 77% yield. This demonstrates that our methodology
provides effective access to a wide range of N-arylhydroxylamines
by a route that offers two key advantages: (1) It produces stable
doubly-protected intermediates that can be purified easily and
(2) it allows the protective groups to be removed under mild con-
ditions that do not cause extensive degradation of the final
product.
17. Carpino, L. A.; Tsao, J.-H.; Ringsdorf, H.; Fell, E.; Hettrich, G. Chem. Commun.
1978, 358–359.