Journal of the American Chemical Society
Communication
(3) For discussions and leading references, see: (a) Yang, X.; Wu, T.;
Phipps, R. J.; Toste, F. D. Chem. Rev. 2015, 115, 826−870. (b)
References 1b and 2b. (c) Liang, T.; Neumann, C. N.; Ritter, T.
Angew. Chem., Int. Ed. 2013, 52, 8214−8264. (d) Xu, J.; Liu, X.; Fu, Y.
Tetrahedron Lett. 2014, 55, 585−594.
(4) For a few examples of target compounds, see: (a) Proline
derivative: Del Valle, J. R.; Goodman, M. Angew. Chem., Int. Ed. 2002,
41, 1600−1602. (b) Qiu, X.-l.; Qing, F.-l. J. Org. Chem. 2002, 67,
7162−7164. (c) Nucleoside analogue: Jeannot, F.; Gosselin, G.;
Standring, D.; Bryant, M.; Sommadossi, J.-P.; Loi, A. G.; La Colla, P.;
́
Mathe, C. Bioorg. Med. Chem. 2002, 10, 3153−3161. (d) Estradiol
derivative: Blazejewski, J.-C.; Wilmshurst, M. P.; Popkin, M. D.;
Wakselman, C.; Laurent, G.; Nonclercq, D.; Cleeren, A.; Ma, Y.; Seo,
H.-S.; Leclercq, G. Bioorg. Med. Chem. 2003, 11, 335−345.
(5) For example, see: (a) Nagib, D. A.; Scott, M. E.; MacMillan, D.
W. C. J. Am. Chem. Soc. 2009, 131, 10875−10877. (b) Allen, A. E.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132, 4986−4987.
(6) For a recent example, see: Massolo, E.; Benaglia, M.; Orlandi, M.;
Rossi, S.; Celentano, G. Chem. - Eur. J. 2015, 21, 3589−3595.
(7) For a recent example, see: Nishimine, T.; Fukushi, K.; Shibata,
N.; Taira, H.; Tokunaga, E.; Yamano, A.; Shiro, M.; Shibata, N. Angew.
Chem., Int. Ed. 2014, 53, 517−520.
(8) For example, see: Dong, K.; Li, Y.; Wang, Z.; Ding, K. Angew.
Chem., Int. Ed. 2013, 52, 14191−14195.
(9) (a) For the initial report, see: Fischer, C.; Fu, G. C. J. Am. Chem.
Soc. 2005, 127, 4594−4595. (b) For the most recent study, see: Choi,
J.; Martín-Gago, P.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 12161−
12165.
(10) For examples of metal-catalyzed cross-coupling reactions of
CF3CH2OTs and CF3CH2I (primary alkyl electrophiles), see:
(a) Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2012, 51, 1033−1036.
(b) Liang, A.; Li, X.; Liu, D.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chem.
Commun. 2012, 48, 8273−8275. (c) Feng, Y.-S.; Xie, C.-Q.; Qiao, W.-
L.; Xu, H.-J. Org. Lett. 2013, 15, 936−939. (d) Leng, F.; Wang, Y.; Li,
H.; Li, J.; Zou, D.; Wu, Y.; Wu, Y. Chem. Commun. 2013, 49, 10697−
10699.
(11) To the best of our knowledge, there are no examples of metal-
catalyzed cross-couplings of perfluorinated alkyl nucleophiles with
unactivated alkyl electrophiles, which could represent a complemen-
tary route to the products illustrated in eq 1.
(12) For an early example of an enantioselective reaction wherein
differentiation between a CF3 and a CH3 group is achieved, see: Feigl,
D. M.; Mosher, H. S. Chem. Commun. 1965, 615−616.
(13) For a recent review on the influence of fluorine in asymmetric
catalysis, see: Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135−147.
(14) Liang, Y.; Fu, G. C. Angew. Chem., Int. Ed. 2015, 54, 9047−9051.
(15) Notes: (a) The method described in ref 14 is not effective for
the arylation process illustrated in Table 1, furnishing poor ee and
yield. (b) PhZnCl is generated from PhLi. If PhZnCl is produced
instead from PhMgCl, then the arylation proceeds in 95% ee and 81%
yield. Ph2Zn is not effective under these conditions, furnishing 88% ee
and a 9% yield.
(16) These families of ligands have previously been employed in
stereoconvergent nickel-catalyzed cross-couplings of alkyl electro-
philes: (a) Bis(oxazoline): Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010,
132, 1264−1266. (b) Pybox: Reference 9a. (c) 1,2-Diamine: Saito,
B.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 6694−6695.
activating/directing group; furthermore, this approach is
effective at producing a variety of other enantiomerically
enriched fluorinated compounds under the same conditions.
From a practical perspective, it is noteworthy that both of the
catalyst components are commercially available and can be
handled in air and that the method is not particularly air- or
water-sensitive. Further studies of nickel-catalyzed cross-
couplings of alkyl electrophiles are underway.
ASSOCIATED CONTENT
* Supporting Information
Experimental procedures and compound characterization data.
The Supporting Information is available free of charge on the
■
S
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support has been provided by the National Institutes of Health
(National Institute of General Medical Sciences: R01-
GM62871) and the Gordon and Betty Moore Foundation
(Caltech Center for Catalysis and Chemical Synthesis). We
thank Dr. Allen G. Oliver (University of Notre Dame) and Dr.
Nathan D. Schley for assistance.
(17) Notes: (a) During the course of these couplings, we have not
observed kinetic resolution of the electrophile (<5% ee), consumption
of the cross-coupling product, or erosion in the ee of the product. (b)
In a preliminary study under our standard conditions, a thienylzinc, a
pyridylzinc, and an alkenylzinc reagent were not suitable cross-
coupling partners. (c) Hydrodebromination of the electrophile is the
predominant side reaction.
(18) For examples of the reactivity of aryl ethers in nickel-catalyzed
cross-couplings, see: Rosen, B. M.; Quasdorf, K. W.; Wilson, D. A.;
Zhang, N.; Resmerita, A.-M.; Garg, N. K.; Percec, V. Chem. Rev. 2011,
111, 1346−1416.
REFERENCES
■
(1) For leading references, see: (a) Fluorine in Pharmaceutical and
Medicinal Chemistry: From Biophysical Aspects to Clinical Applications;
Gouverneur, V., Muller, K., Eds.; Imperial College Press: London,
̈
2012. (b) Zhu, W.; Wang, J.; Wang, S.; Gu, Z.; Acena, J. L.; Izawa, K.;
̃
Liu, H.; Soloshonok, V. A. J. Fluorine Chem. 2014, 167, 37−54.
(2) For discussions and leading references, see: (a) Cho, E. J.;
Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L.
Science 2010, 328, 1679−1681. (b) Alonso, C.; Martínez de Marigorta,
E.; Rubiales, G.; Palacios, F. Chem. Rev. 2015, 115, 1847−1935.
C
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX